ED 023 609

SE 005 586

By -Rufolo, Daniel O.

Guide for Teaching Honors Physics 1-2. Fifth Edition.

San Diego City Schools, Calif.

Pub Date 68

Nate-86p.

EDRS Price MF -\$050 HC -\$4.40

Descriptors - *Able Students, Course Descriptions, *Curriculum, Grade 12, Instruction, Instructional Materials, Objectives, Physical Sciences, *Physics, Science Equipment, *Secondary School Science, *Teaching Guides

Identifiers - California, Physical Science Study Committee College Physics, San Diego

The guide has been revised to accommodate the adoption of "Physical Science Study Committee College Physics" as the basic textbook for this course. An introduction describes the scope and objectives of the course. Presented are suggestions for teaching the course, content, time allotment to topics, laboratory work, evaluation, materials and equipment, and use of community resources. Topics included in the course are discussed under the headings of "Optics and Waves," "Mechanics," and Electricity and Atomic Structure." Appendices include suggestions for individual study, books, periodicals, and equipment. (BC)

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY.

GUIDE FOR TEACHING HONORS PHYSICS 1-2

ED023609

San Diego City Schools San Diego, California 1968

SE 005 5-86

ERIC Full Text Provided by ERIC

GUIDE FOR TEACHING HONORS PHYSICS 1-2

GRADE 12

Prepared by

Daniel O. Rufolo

CONSULTANT COMMITTEE

Clifford T. Fredrickson

Howard L. Weisbrod

S. L. Giuliani, Chairman

San Diego City Schools San Diego, California 1955 Fifth Edition: 1968 Unedited

PREFACE

This fifth edition of the Guide for Teaching Honors Physics 1-2 is a major revision of the former publication to accommodate the adoption of the Physical Science Study Committee College Physics: as the basic textbook material for the course.

It is expected that the honors course will be offered in San Diego City schools concurrently with other regular physics courses such as the PSSC Physics and the Harvard Project Physics. Materials for these courses are also referred to in the guide.

The publication is tentative and has not been edited. It will be used and evaluated by the teachers involved. Submission of constructive suggestions for its improvement are solicited and should be sent to the Science Specialist, Curriculum Services Division.

William H. Stegeman

Assistant Superintendent Curriculum Services Division

TABLE OF CONTENTS

<u>Pag</u>
INTRODUCTION
Description of Course
Objectives
Scope
SUGGESTIONS FOR TEACHING
Course Content
Sequence of Topics and Time Allotment 6
Laboratory Work and Equipment
Conventional Usage
Student Preparation
Use of Community Resources
Naval Electronics Laboratory Science Achievement Awards 8
Evaluation of Student Progress
Meetings of Teachers
Materials and Equipment
TOPIC OUTLINES
I. Introduction
II. Optics and Waves
III. Mechanics
IV. Electricity and Atomic Structures
APPENDICES =
Appendix A. Suggested Topics for Individual Study 59
Appendix B. Books, Periodicals, and Equipment 67
Appendix C. Supplementary Materials for Reproduction 89

INTRODUCTION

Description of Course*

HONORS PHYSICS 1-2 (two-semester course-grade 12--prerequisites: successful completion or concurrent enrollment in "Trigonometry and Advanced Algebra 1-2" or a higher level mathematics course, superior academic standing; see District Procedure No. 5436-1)

Description of course:

The course content is similar to the regular course in physics, with a greater emphasis on modern physics. The laboratory approach of the Physical Science Study Committee is used in this course along with appropriate supplementary college-level materials.

Objectives of course:

The objectives of this higher level course in physics are essentially the same as stated for Physics 1-2 except that the greater opportunities for depth study and coverage of more advanced topics should result in great individual accomplishment in original problem solving, technical writing, and possible qualification for advanced placement in college through examination.

Instructional content or areas of emphasis:

Introduction 1-2 weeks
Optics and Waves 9-10 weeks
Mechanics 14-15 weeks
Electricity and Atomic Structure 10-11 weeks

Basic texts: Physical Science Study Committee, College Physics, 1968
Physical Science Study Committee, College Physics Laboratory Guide,
1968

Supplementary texts: White and Manning, Experimental College Physics, 3rd ed.,
1954 (Laboratory Manual)
White, Modern College Physics, 5th ed., 1966

Guides: San Diego City Schools, Guide for Teaching Honors Physics 1-2, 1968 (Stock No. 41-P-6600)

Physical Science Study Committee, <u>Instructors Guide for College Physics</u>, 1968

San Diego City Schools, Handbook of Science Laboratory Practices and Safety, 1966

^{*}San Diego City Schools Digest of Secondary Schools Curriculum, published annually, San Diego, California

Objectives

This course is frequently the student's first introduction to the formal study of physics. It is not expected that he will emerge an expert in this vast area of science. Keeping this in mind, the teacher should seek to do the following:

- -Stimulate intellectual curiosity, engender satisfaction in intellectual achievement, and cultivate the ability to think rationally.
- -Help the student develop an appreciation of ethical values which form the basis of life in a democracy and of the responsibilities and contributions of science to society.
- -Provide the student with a frame of reference in which may be shown how knowledge is obtained experimentally and how the results can produce a theory through the application of the scientific method.
- -Develop skills in the use of specific instruments and tools as required by the course.
- -Demonstrate the application of mathematics as a tool in problem solving. The mathematics involved will include trigonometry and elementary calculus, along with the use of logarithms and the slide rule.
- -Teach the use of graphing techniques for the correlation of experimental data from which empirical mathematical relationships may be developed.
- -Give instruction in effective communication with written and oral reports, including vocational opportunities in physics.

Scope

The content of the Physical Science Study Committee (PSSC) college-level course has been chosen "not simply to cover physics, but to display the structure of the field." The topics which have been selected are explored more fully than in other beginning physics courses. Where desired, the teacher is encouraged to present a broader topical coverage by reference to supplementary materials which are available in our schools, such as White's Modern College Physics. To achieve a basic understanding of the conceptual framework of modern physics, the student is expected to:

- -Study his PSSC texts and other materials provided.
- -Use a more rigorous approach to the mathematical derivations as obtained from experimental physical data.
- -Intelligently evaluate and understand physical problems through the application of basic principles of physics.
- -Participate in laboratory investigations which involve independent thinking along with a mature analysis of collected data.
- -Extend beyond the classroom his interest in physics by studying and doing research in areas which are not covered in the course. These student projects frequently become entries in the Greater San Diego Science Fair.

2

SUGGESTIONS FOR TEACHING

ERIC Profits by ERIC

Course Content

It is the intention of this course to teach what physics is and to reveal its structure content. Most of the topics listed in the guide follow a sequential pattern and are all interdependent. The outline is intended as a guide in the selection of topics to be studied and in this context there will be found listed:

- -Subject matter topics covered in the PSSC course in physics.
- -Laboratory experiments which are normally done in each area of study.
- -Films, texts, outside reading, and other references.

The subject matter topics are coded to the FSSC text, College Physics, which is the basic textbook for the course, and to Modern College Physics, 5th ed., which serves as a supplementary textbook. Other references may also be brought in wherever the teacher feels that they are appropriate.

The laboratory experiments are coded to the PSSC <u>College Physics Laboratory</u> Guide. References are also made to White and Manning's <u>Experimental College Physics</u> and to other sources which are specifically noted.

The visual aids have been selected to correlate with the topical outline. The type of aid is indicated along with running time or, in the case of film strips, with the number of frames.

The selections listed under "Outside Reading" are particularly suited to the topics in the guide. The student should be encouraged to consider these references as an integral part of the course, and reading assignments should be made by the teacher.

In addition to using the above instructional resources, the student is expected to participate in other experiences such as:

- -Library work on special topics.
- -Science projects or research.
- -Field trips and listening to guest lecturers.
- -Competitions in physics such as the annual NELC and NAPT exams.
- -Student-built scientific equipment and apparatus.

Sequence of Topics and Time Allotment

The topic outline follows the PSSC course. For uniformity among the schools, it is recommended that the units "Introduction," "Optics and Waves," and "Mechanics" through Topic Outline 16 be covered during the first semester. The remainder of "Mechanics" and "Electricity and Atomic Structure" should be covered during the second semester.

Time allotment for each unit is not rigid but the following allocation of time is suggested:

SEMESTER I

Introduction, Topic Outlines 1-2, 1-2 weeks.

Optics and Waves, Topic Outlines 3-10, 9-10 weeks.

Mechanics, Topic Outlines 11-16, 7 weeks.

SEMESTER II

Mechanics, Topic Outlines 17-23, 7-8 weeks.

Electricity and Atomic Structure, Topic Outlines 23-36, 10-11 weeks.

Laboratory Work and Equipment

A list of suitable laboratory experiments related to course topics is a part of the topic outline. It is expected that the student will perform, on the average, at least one laboratory experiment per week. The activities listed have been taken from the PSSC College Physics Laboratory Guide, White and Manning's Experimental Physics, 3rd ed., and from other sources which will be duly noted. The choice of experiments has been made to provide the students with the following opportunities:

- -To learn by means of actual observation some of the principles of physics.
- -To do some independent thinking.
- -To become familiar with modern measuring equipment.
- -To learn the fundamentals of preparing a technical report on the results of a scientific study, the report to include critical analysis and clear presentation of the experimental results in graphical form, where possible, and as an algebraic statement.

Some of the experiments involve the use of equipment not available to each individual school. In order to conserve funds and storage space, the necessary equipment as listed in Appendix B will be made available on a circulating basis to be shared by the schools in each of three area "circuits" as follows:

East: Crawford, Lincoln, Morse, and Patrick Henry High Schools. Central: Kearny, Hoover, Madison, and Clairemont High Schools. West: La Jolla, Mission Bay, San Diego, and Pt. Loma High Schools.

Each teacher should arrange to pick up the equipment from one of the other schools on his circuit. At the end of the school year, the equipment is to be returned to the school responsible for its inventory control.

Conventional Usage

Since the mks system of units is rapidly replacing the cgs system, emphasis on the use of the newer system should be made throughout the course. A table of mks units and conversion factors will be made available to each student. It is recommended that the use of letter symbols and abbreviations follow those in the text.

Student Preparation

Students will be expected to spend approximately one hour in preparation for each class session. Reading and problem assignments should be made from the textbooks and laboratory manuals. Students should be encouraged to use the slide rule wherever possible in making their calculations.

Use of Community Resources

Special lectures and seminars will be arranged in cooperation with community agencies interested in the science education for the able student. Current lists of available speakers are maintained for the convenience of the teacher.

Naval Electronics Laboratory Center Science Achievement Awards

This is an annual competition open to the students of honors physics. Details of this program involving both team and individual competitions are announced in November. The exams and the awards program are normally held in April.

Evaluation of Student Progress

Evaluation of student progress should be in terms of the objectives of the course. The PSSC tests which parallel the development of the course serve as an excellent vehicle for evaluation of student achievement. The teacher is urged to make the various forms of these exams available to his students. Tests may be obtained from Testing Services, San Diego City Schools. Request: Tests of the PHYSICAE SCIENCE STUDY COMMITTEE.

The College Entrance Examination Board Pamphlet, "Achievement Tests" contains an excellent discussion of test development and examples of test items.

Meetings of Teachers

Meetings of teachers of honors courses are held at stated intervals during the year for "in-service" training through demonstration of new equipment and materials, and to discuss:

- -Annual plans.
- -Techniques of instruction.
- -Evaluation of the course.
- -- Future development of the course.
- -Special activities for students.

Materials and Equipment

In Appendix B are listed recommendations concerning:

- -Books and supplies on a one-per-pupil basis.
- -Books and materials for classroom reference.
- -Books which should be available in the library.
- -Laboratory equipment available on circulating basis.

College Entrance Examination Board. "Achievement Tests," latest edition.
Los Angeles, California: Education Testing Service.

TOPIC OUTLINES

I.	Introduction
II.	Optics and Waves
III.	Mechanics
IV.	Electricity and Atomic Structure 31

Key to Abbreviations Used in the Topic Outline

Ch. - Chapter

EBF - Encyclopedia Brittanica Film

ECP - Experimental College Physics

Fs - Filmstrip

HPP - Harvard Project Physics

McGH - McGraw Hill Co.

MCP - Modern College Physics

CPPSSC - College Physics Physical Science Study Committe

CPLG - College Physics Laboratory Guide

1. TIME, SPACE AND MATTER (3 days)

INSTRUCTIONAL RESOURCES

The tools of physics

- -Microscope
- -Telescope
- -Laboratory balance
- -Seismograph
- -Cyclotron, etc.

The people of physics

- -Scientists
- -Engineers
- -Artists, designers, and others
- -Electricians, etc.

Time and its measurement

- -Short time intervals
- -Repetitive motions, the stroboscope
- -Comparing times and counting units
- -Large and small times

Space and its measurement

Matter

Limitations of measuring

Fractional error

Black boxes

TEXTS

Basic: CPPSSC CH. 1 Supplementary: MCP Ch. 1, 2

LABORATORY

CPLG: Exp. 1

Exp. 2

Exp. 3

ECP Exp. Ch. 2, Sig Figures etc; and Ch. 3, Sec. 1.
Vernier and micrometer devices.

VISUAL AIDS

Films:

Short Time Intervals, PSSC (21)
Time and Clocks, PSSC (23)
Long Time Intervals (21), PSSC
About Time; Parts I and II,
A-T-T- (60)

The Micrometer, USDE (15)
Measuring Large Distances,
PSSC (29)

Measuring Short Distances, PSSC (20)

Programmed Lesson: HPP,
Measurement and Precision

SP-L 759-9492. The Starry Night

OUTSIDE READING

"Time Reversal," <u>Scientific</u>

<u>American</u>, Vol. 196, Feb.

1957, p. 10.

Carnap, Rudolph. "Merits of the Quantitative Method" from: Philosophical Foundations of Physics, Basic Books Inc., N.Y., 1966, Ch. 11.

Holton, Gerald. "The Nature of Concepts" from: <u>Introduction</u> to Concepts and Theories in Physical Science, Addison-Wesley, Reading, Mass., 1952.

2. DATA, GRAPHS AND FUNCTIONS (4 days)

INSTRUCTIONAL RESOURCES

Tables and graphs

- -Tabulation of data
- -Graphical representation of data
- -Analysis and formulation

Direct proportion and linear function

Power laws and similar figures

- Areas and volumes as examples of second and third power laws.
- -Derivation of tables, graphs, and equations of these power laws.

The inverse-square relation and stellar distances

- -Light intensity as a function of distance.
- -Measuring relative intensity of a light source, using the inverse relationship.
- -Light intensity as used in measuring star distances.
- -Limitations of this method.

The exponential function

- -Validity and limitations
- -Validity and significance
- -Exponential function and semi-log
- -Power laws and log-log plots

Scaling - The Physics of Lilliput

- -Relationship between strength and C.S. area.
- -Surface area and linear dimensions
- -Load versus strength problems in scaling up.
- -Changes in behavior in systems which are scaled up or down.

TEXTS

Basic: CPPSSC, Ch. 2 Supplementary: ECP, Ch. 1

LABORATORY

CPLG. Exp. 4 and Exp. 5

VISUAL AIDS

SP-L 759 The Cocks
Film:
Change of Scale, PSSC (23)

OUTSIDE READING

Dole, Stephen H. "An
Appreciation of the Earth"
from: <u>Habitable Planets for</u>
Man, Blaisdell Pub. Co., Division
of Ginn and Co., N.Y., 1964.

3. THE PROPAGATION OF LIGHT (4 days)

INSTRUCTIONAL RESOURCES

Sources of light

-Propagation of light
-Identification of sources of light

Interaction of light with matter

- -The behavior of light in striking an object
- -The transmission of light
- -Transparent, colored and opaque objects

Reflection of light

- -Light-sensitive objects
- --Relative sensitivity of objects to light
- -Some devices which can measure relative light intensities
- -Invisible light

How light travels

- -Light travels in straight lines; rectilinear propagation
- -- The bending of light
- -Diffraction
- -Propagation of light, its nature and speed
- -Location of objects

TEXT

Basic: CPSSC, Ch. 3 Supplementary: MCP, Ch. 36

LABORATORY

ECP, Ch. 39, Section 39.1

VISUAL AIDS

Film:
Nature of Light, Coronet (11)

OUTSIDE READING

Young, Thomas. "Experiments and Calculations Relative to Physical Optics" from:

Miscellaneous Works of Thomas
Young, Vol. 1, edited by
Geo. Peacock and John Murray,
London, 1855, Ch. 9.

Michelson, A.A. "Velocity of Light" from: Studies in Optics, The University of Chicago Press, Chicago, 1927.

4. REFLECTION AND REFRACTION (5 days)

INSTRUCTIONAL RESOURCES

The ray diagram as a technique in understanding light behavior

- -Formation of shadows.
- -Light rays and what they represent.
- -The non-interaction of light rays.

The two laws of reflection.

- -The incident and reflected ray and their plane of interaction.
- -The angle of reflection compared to the angle of incidence.

Image formation in plane mirrors.

- -Description of an image.
- -Location of an image.
- -The geometry involved in image location and size.
- -Multiple images and their formation,

The incident ray, the refracted ray, and the normal; their relationship.

-Experimental evidence for refraction. -Evaluation of experimental data on refraction,

The index of refraction, Snell's law.

- -Relationship between the angle of refraction and the angle of incidence.
- -The absolute index of refraction.
- -Methods of representing this relationship.

The reversibility of light and refraction.

- -Passage of light from glass, water to air.
- -Passage of light from water to glass.
- -Total internal reflection.

Dispersion.

- -Refraction with prisms.
- -Composition of white light.
- -Index of refraction as related to wavelength.
- -The prediction of light path through a prism, using Snell's law.

TEXTS

Basic: CPPSSC Ch. 4 Supplementary: MCP Ch. 37, 38 and 39

LABORATORY

CPLG, Exp. 6 and Exp. 7

ECP, Ch. 40, Section 40.2, Part I

VISUAL AIDS

Fs 535 Light

OUTSIDE READING

Griffin, Donald R. "Echoes of Bars and Men" from: Science Study Series, Doubleday Anchor 1959.

Minnaert, M. <u>Light and Color</u> in the Open Air, Dover, 1954.

5. THE PARTICLE MODEL OF LIGHT (4 days)

INSTRUCTIONAL RESOURCES

Reflection and the particle model.

- -The two laws of reflection.
- -Ideal elastic collisions and the two laws of reflection.
- -Specular and diffuse reflection and the model particle.

Refraction and the particle model.

- -The two laws of refraction and the particle model.
- -Limitations of the particle model.
- -Implications for refraction.

Inverse square law and the particle model.

- -The unit of light intensity.
- -Explanation of the inverse square law by the particle model.
- Pressure of light; prediction by the particle model.

Particle model and the absorption and heating of light.

The limitations of the particle model.

- -Partial refraction and reflection.
- -Diffraction.
- -Limited value of a complicated model.
- -The speed of light and the particle model.

TEXTS

Basic: CPPSSC, Ch. 5

LABORA TORY

CPLG, Exp. 8

VISUAL AIDS

Films:

The Pressure of Light, PSSC21
The Speed of Light, PSSC (23)

OUTSIDE READING

Jaffe, Bernard. "Michelson and Speed of Light" from:
Science Study Series, Double-day Anchor, 1960, Ch. 3.

Maggie, William Francis.

A Source Book in Physics.

McGraw Hill, 1935.

6. INTRODUCTION TO WAVES (3 days)

INSTRUCTIONAL RESOURCES

Characteristics of a wave

- -The disturbance of a "medium"
- -Propagation
- -Transportation
- -Pulses

Waves on a coil spring

- -Speed of a pulse
- -Motion of a point versus the motion of a wave
- -Graphing a pulse
- -Superposition

Reflection and transmission

- -Fixed-end reflection
- -Free-end reflection
- -Transmission in various media
- -Idealization and approximations in the evaluation of pulses

The wave model of light

TEXTS

Basic: CPPSSC, Ch. 6

LABORA TORY

CPLG: Exp. 9

VISUAL AIDS

Film:

Simple Waves, Bell Telephone (27)

Demonstration: Bell Telephone Wave Machine (40)

QUISIDE READING

Maxwell, James Clark. "Action at a Distance" from:
Scientific Papers of James
Clark Maxwell, Vol. II,
Cambridge University Press,
Cambridge, England.

PSSC: "Introduction to Physics" from: Physics, D.C. Heath, Boston, 1965, Ch. 15.

Motion and Acoustics" from:
General Physics for Students
of Science, John Wiley and
Sons, Inc., N.Y., 1940,
Ch. 26.

7. WAVES AND LIGHT (10 days)

INSTRUCTIONAL RESOURCES

Water waves.

- -Straight and circular pulses, their direction of propagation.
- -Reflection of water waves.
- -Crests and troughs.
- -Water waves and the law of reflection.

The speed of propagation of a wave.

- -Periodic waves.
- -Frequency and period.
- -Wavelength uniform speed and period.
- -Speed as a function of wavelength and period.

Refraction and waves.

- -Water waves and Snell's Law.
- -Speed of a water wave dependent upon the depth of water.
- -Index of refraction and the wave model.
- -Reflection and refraction at the Boundary between two depths of water.

Dispersion.

- -Dispersion and the frequency of a wave.
- -Different frequencies and color.

Diffraction.

- -Definition.
- -Relationship between wavelength and slit opening.
- -Prediction of the wavelength of light.

TEXTS

Basic: CPPSSC, Ch. 7
Supplementary: MCP, Ch. 42 and Ch. 43

LABORATORY

CPLG, Exp. 10 Exp. 11 Exp. 12 Exp. 13

VISUAL AIDS

Demonstration: Sunset Film: Spectograph, McGraw Hill (20)

OUTSIDE READING

Benade, Arthur H. "Horns, String and Harmony," Science Study Series. Doubleday Anchor, 1960, Ch. 2 and Ch. 4.

Bonner, Francis T. and Phillip Melba, Principles of Physical Science, Addison Wesley, 1957, Ch. 16.

8. INTERFERENCE (5 days)

INSTRUCTIONAL RESOURCES

Periodic waves in one dimension.

- -Interference on a spring.
- -Reflection, refraction, and diffraction and the wave model.
- -Nodes and interference.

Two-dimensional waves.

- -Two-point source of waves.
- -Nodal lines and their significance.

Wavelength, source separation, and angles.

- -Calculating and interference pattern at a large distance from the source.
- -Phases of a wave.
- -Effect of "out-of-phase" sources on an interference pattern.

TEXTS

Basic: CPPSSC, Ch. 8
Supplementary: MCP, Ch. 14

LABORATORY

CPLG: Exp. 14
Exp. 15

VISUAL AIDS

Film:
Sound Waves in Air, PSSC, (35)

OUTSIDE READING

Motion and Acoustics" from:
General Physics for Students
of Science. John Wiley and
Sons, Inc., N.Y., 1940.

Benade, Arthur H. "Ears, Architects of Harmony" from: Horns, Strings and Harmony. Doubleday and Co. 1940, Ch. 5.

9. LIGHT WAVES (10 days)

INSTRUCTIONAL RESOURCES

Physical factor related to interference.

- -Interference patterns and the ripple
- -Nodal lines and wavelength.
- -Measuring the wavelength.

Two-slit interference.

- -Two-light sources in phase.
- -Phase of light sources and interference patterns.
- -Lasers.

Color and wavelength of light.

- -White light and interference.
- -Wavelength of the spectral colors in white light.

Diffraction.

- -Superposition.
- -Huygen's principle.
- -Diffraction by a slit.
- -Diffraction and resolution.

Interference in thin films.

- -Two surfaces of a thin film and reflection.
- -Reflected light and interference.
- -Interference and transmitted light through thin films.
- -Color effects in interference.

TEXTS

Basic: CPPSSC, Ch. 9

Supplementary: MCP, Ch. 43

Ch. lili

Ch. 45

LABORATORY

CPLG: Exp. 16

Exp. 17

Exp. 18

VISUAL AIDS

Fs Ripple Tank and Waves (36)

OUTSIDE READING

Mack, J. E. and Martin, M. J. The Photographic Process. McGraw-Hill Book Co., 1939.

Weisskopf, Victor F. Knowledge and Wonder. Doubleday Anchor 1963, Science Study Series Ch. 3 and Ch. 9.

10. APPLIED OPTICS (6 days)

INSTRUCTIONAL RESOURCES

Curved mirrors.

- -Curved mirrors and light focusing.
- -Laws of reflection and curved mirrors.
- -Parallel light rays and their behavior in reflection.
- -Definition of and location of principle focus.

The reversibility of light.

- -Definition of focal length.
- -The searchlight and astronomical telescope and their use.
- -The convergence of light by a set of prisms.

Lenses.

- -Converging-diverging lenses.
- -Image formation.
- -Conjugate foci; lens maker's formula.

Image formation with parabolic mirrors.

- -Ray diagrams.
- -The light ray through the principal focus and its behavior.
- -The geometry involved in reflection.
- -Image position and size.
- -Real and virtual images.

Optical instruments.

- -The magnifier or simple microscope.
- -The compound microscope.
- -Refracting telescopes.
- -Limitations of optical instruments.
- -Abberations and resolutions.

TEXTS

Basic: CPPSSC, Ch. 10

Supplementary: MCP, Ch. 39

Ch. 40

Ch. 41

LABORATORY

CPLG: Exp. 19

Exp. 20

Exp. 21

Exp. 22

ECP, Ch. 41

VISUAL AIDS

Films:

Introduction to Optics, PSSC (23)

Spherical Mirrors EBF (13)

OUTSIDE READING

Jenkins, Francis A. and White, Harvey E. Fundamental of Optic. McGraw Hill, 1957, Chs. 4, 5, 9, and 10.

Newton, Sir Isaac, Optics. 4th Ed. of 1730, Dover Pub. Co., N.Y., 1952.

11. MOTION ALONG A STRAIGHT LINE PATH (5 days)

INSTRUCTIONAL RESOURCES

Position and displacement along a line.

- -Coordinate system.
- -Negative and positive displacements.

Velocity.

- -Constant velocity.
- -Varying velocity.

Position-tome graphs.

- -Analysis for a steady velocity.
- -Analysis for a varying velocity.
- -Slope of a line and its significance.
- -Slope of a tangent line and instantaneous velocity.

Velocity-time graphs.

- -Acceleration as interpreted from velocity-time graphs.
- -Results for motion with constant acceleration.

TEXTS

Basic: CPPSSC, Ch. 11

Supplementary: MCP, Ch. 3

LA BORA TORY

CPLG: Exp. 23
Exp. 24

VISUAL AIDS

Program lesson on displacement and position—HPP.

12. MOTION IN SPACE (4 days)

INSTRUCTIONAL RESOURCES

Position and displacement.

Addition and subtraction of displacements.

-Multiplying vectors by numbers and scalars.

Velocity vectors in space.

-Compounds of vectors.

Velocity changes and constant vector acceleration.

Changing acceleration.

Description of motion.

-Frames of reference.

Kinematics and dynamics.

Speed of light.

TEXTS

Basic: CPPSSC, Ch. 12

Supplementary: MCP, Ch. 7 Ch. 8 Ch. 12

LABORATORY

CPLG, Exp. 25

VISUAL AIDS

Programmed lesson in vectors--

13. NEWTON'S LAW OF MOTION (5 days)

INSTRUCTIONAL RESOURCES

Ideas about force and motion.

- -Force related to push or pull.
- -Net force and changes in motion.
- -Motion without force.

Changes in velocity.

- -Constant force.
- -Changes in velocity and applied force.

Mass and weight.

- -Inertial mass.
- -Inertial mass and gravitational mass.

Newton's Law of motion.

- -The unit of force.
- -Changing forces and Newton's Law.
- -Addition of forces and net force.
- -Vector nature of Newton's Law.
- -Forces in nature.

TEXTS

Basic: CPPSSC, Ch. 13

Supplementary: MCP, Ch. 6

LABORATORY

CPLG: Exp. 26

VISUAL AIDS

Films:

Forces, PSSC (22)

Inertia, PSSC (27)

Inertial Mass, PSSC (20)

OUTSIDE READING

Murchie, Guy. Music of the Spheres, Houghton Mifflin, 1960, Ch. 10.

Galileo, Galilei. <u>Dialogues</u>
<u>Concerning Two New Sciences</u>,
<u>translated by H. Crew and</u>
A. de Salvio. Macmillan, 1914.

14. MOTION AT THE EARTH'S SURFACE (7 days)

INSTRUCTIONAL RESOURCES

Weight and the "gravitational field."

- -The meaning of weight.
- -Relationship between mass and weight.
- -Weight of an object at the earth's su face.

Falling bodies.

- -Gravitation.
- -Free fall.
- -Acceleration due to gravity.
- -Air resistance.
- -Terminal velocity.

Projectiles.

- -Vertical and horizontal motion.
- -Horizontal motion and constant velocity.
- -Vector nature of Newton's Law of motion.
- -Trajectory.

Constant force and instantaneous motion.

- -A constant force perpendicular to the motion.
- -Circular motion.
- -Kinematics of circular motion.
- -Satellite motion, artificial and natural.

Simple harmonic motion.

- -Restoring force and displacement. -Centripetal force and its components.
- -Harmonic motion and Newton's Law.

Frames of reference.

- -Experimental frames of reference.
- -Inertial frame of reference.
- -Accelerating frames of reference.
- -Fictitious forces and accelerated
- frames of reference.
- -Newton's Law and the earth's rotation.

TEXTS

Basic: CPPSSC, Ch. 14

Supplementary: MCP, Ch. 5

LABORA TORY

CPLG: Exp. 27

Exp. 28

Exp. 29

ECP. Ch. 6, Section 6.1

Free Fall, Polaroid and Strobe VISUAL AIDS

Films:

Falling Bodies, PSSC (30) Deflecting Forces, PSSC (29) Periodic Motion, PSSC (30) Frames of Reference, PSSC (26)

OUTSIDE READING

Faraday, Michael. "The Force of Gravity," from: On the Various Forces of Nature. Viking Press, N.Y. 1960.

Dicke, R. N., Roll, P. G., and Weber, J. "Gravity Experiments" from: Modern Science and Technology. D. Van Nostrand Co., Princeton, N.J., 1965.

15. UNIVERSAL GRAVITATION AND THE SOLAR SYSTEM (7 days)

INSTRUCTIONAL RESOURCES

Motion in the heavens.

- -The Greeks and astronomy.
- -Motions of the moon.
- -Heliocentric system of the solar system.
- -A geo-centric system and Ptolemy.

The works of Copernicus and Tycho Brahe.

- -The Copernican system.
- -Arguments for the Copernican system.
- -Arguments against the Copernican system.
- -Historic consequences.
- -Tycho Brahe and his observations.
- -Tycho's compromise system.

The appearance of a new universe.

- -Abandonment of uniform circular motion.
- -Kepler's second law.
- -Using Kepler's first two laws.
- -Kepler's third law.
- -Galileo's viewpoint and telescopic evidence.
- -Galileo's arguments.

The unity of earth and sky.

- -Newton's Principia.
- -Newton's analysis; motion and a central force.
- -The inverse square law of planetary force.
- -Law of Universal Gravitation.
- -Gravitation and planetary motion.

TEXTS

Basic: CPPSSC, Ch. 21

Supplementary: MCP, Ch. 9
Ch. 10

LABORA TORY

CPLG: Exp. 30

VISUAL AIDS

Films: Universal Gravitation, PSSC (28)

Eliptic Orbits, PSSC (18)

OUTSIDE READING

Toulmin, Stephen and Goodfield, June. "Copernicus, His Aim and His Theory" from: The Fabric of the Heavens. Harper and Row. N.Y., 1961. Ch. 6.

Feyman, R.P., Leighton, R. B.; and Sands, M. "Universal Gravitation" from: The Feyman Lectures on Physics, Vol. 1.

Addison-Wesley, Reading, Mass. 1963, Ch. 7.

Galileo: "The Starry Messenger" from: Discoveries and Opinion of Galileo by Stillman Drake.

Doubleday and Co., Inc.,
1957.

16. MOMENTUM AND THE CONSERVATION OF MOMENTUM (9 days)

INSTRUCTIONAL RESOURCES

Dynamics of motion.

- -Impulse.
- -Impulse as a vector.
- -Momentum.
- -The components of momentum.
- -Momentum as a vector.
- -Force and changes in momentum.

Changes in momentum through interaction of bodies.

- -Explosions.
- -Head-on collisions.
- -Elastic and inelastic collisions.
- -Glancing collisions.
- -Law of conservation of momentum.
- -Center of mass-quantity defined.

Action-reation forces.

- -Isolating a body.
- -Rocket flights into space.
- -Forces in a system before launch.
- -Vertical and inclined flight.
- -Free flight.

TEXTS

Basic: CPPSSC, Ch. 16

Supplementary: MCP, Ch. 5

Ch. 13

Ch. 16

Ch. 17

LABORATORY

CPLG: Exp. 31

Exp. 32

Exp. 33

VISUAL AIDS

Film:

Law of Conservation of Momentum, Coronet (18)

OUTSIDE READING

Bondi, Hermann. Relativity and Common Sense. "Science Study Series." Doubleday Anchor, Chs. 1-4.

Holton, G. and Roller, D.H.D. Foundations of Modern Physics Science. Addison-Wesley, 1958, Ch. 17.

17. WORK AND ENERGY (7 days)

INSTRUCTIONAL RESOURCES

Work defined in physical terms.

- -Energy transfer.
- -Energy transfer and work performed.
- -Fuel consumption.
- -Work and force.
- -Work and direction of applied force.

Kinetic energy.

- -Energy in motion.
- -The dynamical characteristics of kinetic energy.

Interaction of bodies.

- -Transfer of kinetic energy.
- -Simple collisions and K.E.
- -Elastic collisions and the conservation of K.E.
- -K.E. and momentum.
- -Work and K.E., more than one force.
- -Conservation of K.E. and inelastic collisions.

TEXTS

Basic: CPPSSC, Ch. 17.

Supplementary: MCP, Ch. 15

LABORATORY

CPLG: Exp. 34

VISUAL AIDS

Films:

Elastic Collisions and Stored Energy, PSSC (25)

Momentun, Energy, and Center of Mass, PSSC (25)

OUTSIDE READING

Carnot, Sadi. "The Motive Power of Fire," an excerpt from the paper "Reflections on the Motive Power of Fire, and On Machines Fitted to Develop that Power" from: Reflections on the Motive Power of Fire.

Dover Pub., N.Y., 1960.

Forbes, R.J. and Dijksterhuis, E.J. "The Steam Engine Comes of Age" from: A History of Science and Technology, Vol. 2. Penguin Books, Ltd., Harmondsworth, Middlesex, England, 1963, Ch. 20.

Thomson, William and Tait, P.G.
"Energy" from: Good Words for
1862, Norman Macleod, Alexander Strachan and Co., London.

18. POTENTIAL ENERGY (8 days)

INSTRUCTIONAL RESOURCES

Potential energy and its use.

- -The spring bumper.
- -Conservation of mechanical energy.
- -The elastic interaction of a mechanical spring.
- -P.E. of a spring.
- -Conservation of energy in a spring.

P.E. of two interacting bodies.

- -Separation forces and total energy.
- -P.E. and distance of separation.
- -Stored P.E. in a force field.

Gravitational force field.

- -Gravitational P.E. near the surface of the earth.
- -Gravitational P.E. in general.
- -Escape energy, escape velocity, and binding energy of satellites.

Mechanical energy and a complex system; conservation of mechanical energy.

TEXTS

Basic: CPPSSC, Ch. 18

MCP, Ch. 25

LABORATORY

CPLG: Exp. 35

Exp. 36

Exp. 37

VISUAL AIDS

Film:

Energy and Work, PSSC (28)

Fs 530 Energy, Today and Tomorrow (38F)

Fs 530 Energy (41D.)

OUTSIDE READING

Feyman, R.P., Leighton, R.B. and Sands, M. "The Conservation of Energy" from:
The Feyman Lectures on Physics, Vol. I. Addison-Wesley, Reading, Mass. 1963.

Gamow, George. "Gravity,"

Science Study Series. Double
day Anchor, 1962.

19. ANGULAR MOMENTUM AND ITS CONSERVATION (9 days)

INSTRUCTIONAL RESOURCES

Angular momentum.

- -Law of equal areas.
- -Frame of reference and angular momentum.
- -Energy, angular momentum, and trajectory.

The motion of satellites.

- -Total energy and angular momentum.
- -The vector nature of angular momentum.

Rigid bodies.

- -Rotation of rigid bodies.
- -Angular momentum of rigid bodies.
- -Moment of inertia.
- -Torque rate of change of angular momentum.
- -Orbital angular momentum and spin.

TEXTS

Basic: CPPSSC, Ch. 19

Supplementary: MCP, Ch. 17 Ch. 19

Ch. 20

Ch. 21

LABORATORY

CPLG: Exp. 38

Exp. 39

Exp. 40

ECP, Ch. 12, Section 12.2

VISUAL AIDS

Film:

Angular Momentum--A "Quantity, PSSC (26)

OUTSIDE READING

Shonle, John I. "Resource Letter CM-1 on the Teaching of Angular Momentum and Rigid Body Motion," American Journal of Physics, Vol. 33, No. 11, Nov., 1965.

Newton, Isaac. "Proposition IThe Law of Areas" from:
Book I of Mathematical Principles of Natural Philosophy
and his System of the World,
Translated by Florian Cajori,
University of Calif. Press,
1934.

20. HEAT, MOLECULAR MOTION AND CONSERVATION OF ENERGY (5 days)

INSTRUCTIONAL RESOURCES

Motions of small invisible particles.

- -Gas pressure, Boltzmann's Constant, and molecules.
- -Temperature and molecular K.E.
- -Internal energy.

Mechanical energy of bulk motion and internal energy.

- -Quantitative study of the conservation of mechanical to internal energy.
- -Heat flow.

Quantitative relation of energy dissipation and temperature rise.

-Conservation of energy.

TEXTS

Basic: CPPSSC, Ch. 20

Supplementary: MCP Ch. 30

LABORATORY

CPLG: Exp. 41

ECP, Ch. 16 Sec. 16.1 Ch. 20 Sec. 20.1 20.2

VISUAL AIDS

Film:

Conservation of Energy PSSC (27)

Fs 539 Kinetic-Molecular Theory (59F)

OUTSIDE READING

Rogers, Eric M. "The Great Molecular Theory of Gases" from: Physics for the Inquiring Mind. Princeton Univ. Press, 1960.

Maxwell, Clark J. "On the Kinetic Theory of Gases" from: Theory of Heat. Longmann, Green, and Co., London, 1872, Ch. 22.

21. IRREVERSIBLE PROCESS (4 days)

INSTRUCTIONAL RESOURCES

Irreversible processes, examples of.

An experiment with marbles.

- -Qualitative explanation of the marble experiment.
- -Basic ideas about probability.
- -States and distribution.

Expansion of a gas.

- -Free expansion of a gas.
 - -Quantitative aspects.
 - -Density fluctuations.
 - -Inelastic collisions and heat conduction.

TEXTS

Basic: CPPSSC, Ch. 21.

LABORATORY

CPLG: Exp 42

VISUAL AIDS

Film:

Random Events, PSSC (17)

OUTSIDE READING

Feyman, Leighton and Sands, M.

The Feyman Lectures on Physics.

Addison-Wesley Pub. Co. Inc.,

Reading, Mass. 1963, Vol. I,

Ch. 6.

22. ENTROPY (3 days)

INSTRUCTIONAL RESOURCES

Description of a physical system.

- -The macroscopic state.
- -Reversible process.
- -The microscopic state.
- -The gas oscillator.
- -Adiabatic and isothermal processes.

Free expansion and isothermal expansion of an ideal gas.

Entropy

- -Heat bath.
- -Entropy changes in an inelastic collision.
- -Entropy changes in heat conduction at constant volume.
- -The entropy of an ideal gas when both volume and temperature change.
- -Diffusion--the entropy of a perfect gas.

The Second Law of Thermodynamics.

TEXTS

Basic: CPPSSC Ch. 22

Supplementary: MCP, Ch. 25

LABORATORY

None.

VISUAL AIDS

Film:

Mechanical and Thermal Energy PSSC (22)

OUTSIDE READING

MacDonald, D.K.C. Near Zero.
Doubleday Anchor, Science
Study Series, 1961.

23. SOME QUANTITATIVE RACTS ABOUT ELECTRICITY (5 days)

INSTRUCTIONAL RESOURCES

Electrostatic charges.

- -Method of producing.
- -Forces between charged bodies.
- -Electrostatic forces and atomic charged particles.
- -Kinds of charges.
- -Charges in motion.
- -Conductors and insulators.

The electroscope

- -Detection of charge.
- -Electrostatic induction.

Transfer of charge.

- -Batteries.
- -Electric currents.
- -Conduction of gases--ionization.
- -Cloud chamber.
- -Conductivity of solutions.
- -Electrons in metals.
- -Diodes, electron guns, cathode-ray oscilloscopes.

TEXTS

Basic: CPPSSC, Ch. 23

Supplementary: MCP, Ch. 47

LABORATORY

CPIG: Exp. 43
Exp. 44

VISUAL AIDS

Demonstration in electrostatics (nature of demonstrations dependent upon equipment available)

Films:

Electroscope, EBF (11)

Electrostatics (11)

OUTSIDE READING

Ingalls, Albert G. "About Historic and Modern Machines for the Generation of Static Electricity" from: The Amateur Scientist. Scientific American Inc., 1955.

Weisskopf, Victor, F. Knowledge and Wonder. Doubleday Anchor Science Study Series, 1963.

24. COULOMB'S LAW AND THE ELEMENTARY ELECTRIC CHARGE (5 days)

INSTRUCTIONAL RESOURCES

Electrostatic force.

-Force and distance.

Force and charge.

- -Electric force fields.
- -Electric forces as vectors.
- '-Electric field patterns.
- -Uniform force fields.

The Millikan experiment.

- -Measuring small electrical forces.
- -The fundamental natural unit of electric charge.
- -Large electrical balance.
- -Parallel plates and the electric field.
- -Force between elementary charges.

Coulomb's Law and the constant of proportionality.

-Conservation of charge.

ERIC

-The charge of an electron.

TEXTS

Basic: CPPSSC, Ch. 24

Supplementary: MCP, Ch. 50 Ch. 57

LABORATORY

CPLG: Exp. 45
Exp. 46

Millikan Oil Drop (Cenco)

VISUAL AIDS

Films:

Coulomb's Law, PSSC (24)

The Millikan Experiment, PSSC (70)

Coulomb's Force Constant, PSSC (34)

Electric Lines of Force, PSSC (7)

Discovery of the Electron, EBF (30)

Electronic Charge and Mass, EBF (30)

OUTSIDE READING

Cavendish, Henry. "Experimental Determination of the Law of Electric Force" from:
The Electrical Researches of the Honourable Henry Cavendish, F.R.S. Cambridge Univ. Press, Cambridge, England, 1879.

Magie, William Francis.

A Source Book in Physics.

McGraw Hill, 1935,

pp. 408-20.

25. ENERGY AND MOTION OF CHARGES IN ELECTRIC FIELDS (3 days)

INSTRUCTIONAL RESOURCES

Kinetic energy of a charged particle.

- -Work and K.E.
- -The speed of a charged particle.
- -Measuring the speed of a charged particle.
- -Mass of the electron and proton.
- -The hydrogen atom.

Elementary charges in motion.

- -Electric current.
- -Electric current and number of charges.
- -Constancy of current in a closed circuit.
- -Current and electrolysis.

EFF.

- -EMF of a battery.
- -EMF and energy.
- -EMF defined.
- -Batteries in series.
- -Total energy of a battery.

Interaction between elementary charged particles.

- -Electric field.
- -Electric potential.
- -Potential difference.
- -Components of potential difference.

Practical units of electricity.

- -Volt, coulomb and ampere.
- -Electrical energy--electron volt.
- -Electrical power.

TEXTS

Basic: CPPSSC, Ch. 25

Supplementary: MCP, Ch. 48

LABORATORY

CPLG: Exp. 47 Exp. 48

ECP, Ch. 35, Sect. 35.1

VISUAL AIDS

Films:

Counting Electrical Charges in Motion, PSSC (23)

Elementary Charges and Transfer of K.E., PSSC (33.5')

E.M.F., PSSC (20)

Fs 537.2 Current Electricity
Part I (24F)
Part II (27F)
Part III (26F)

OUTSIDE READING

MacDonald, D.K.C. Near Zero,
"Science Study Series."
Doubleday Anchor, 1961,
Ch. 3.

MacDonald, D.K.C. "The
Relativity of Electricity
and Magnetism" from:
Faraday, Maxwell, and
Kelvin. Doubleday Anchor
Inc. 1964.

26. THE RUTHERFORD ATOM (3 days)

INSTRUCTIONAL RESOURCES

The Rutherford atom.

- -Deflection of alpha particles.
- -Trajectories of alpha particles in the electric field of a nucleus.
- -Angular distribution of scattering.

TEXTS

Basic: CPPSSC, Ch. 26

Supplementary: MCP, Ch. 60

LABORATORY

Mechanical Particle Scattering, revolving equipment (district)

Alpha Particle Scattering; use only weak sources.

VISUAL AIDS

Films:

Rutherford Atom, PSSC (40) Atomic Theory, UW (09) Bohr Atom, EBF (30)

Fs 539.76 Structure of the Atom (49F)

OUTSIDE READING

Romer, Alfred. The Restless
Atom, Science Study Series.
Doubleday Anchor, 1960,
Ch. 13.

Born, Max. The Restless Universe. Dover, 1951, Ch. 4.

Andrade, E.M. Rutherford and the Nature of the Atom, Science Study Series. Doubleday Anchor, 1964.

27. ELECTRIC CIRCUITS (3 days)

INSTRUCTIONAL RESOURCES

Electric field, potential and circuits.

- -Potential difference and current flow.
- -Electric field and current flow.
- -Conductors and potential.

Measuring potential difference.

- -Electrometers.
- -Voltmeters.
- -Current flow and measurement.

Elements of an electrical circuit.

- -Definition of a circuit.
- -Conservation of energy in a circuit.
- -IR drops in a circuit.
- -Series and parallel resistors.
- -Kirchoff's Laws.

TEXTS

Basic: CPPSSC, Ch. 27

Supplementary: MCP, Ch. 49 Ch. 50

LABORATORY

CPLG: Exp. 49

VISUAL AIDS

Films:

Electric Potential Energy and Potential Difference, Parts I and II, PSSC (54)

Principles of Electricity, GE (20)

Series and Parallel Circuits, EBF, (10)

Fs 537 Elements of Electrical Circuits (86F)

Fs 537 Series and Parallel Circuits (86F)

OUTSIDE READING

Fink, Donald G. and Lutyens,
David M. The Physics of
Television, Science Study
Series. Doubleday Anchor,
1960.

28. THE MAGNETIC FIELD (1 days)

INSTRUCTIONAL RESOURCES

The magnetic field.

-Detection and direction of a magnetic field, using a magnetic needle.

-Magnets and magnetic field.

-Electric currents and magnetic field.

-Hans Christian Oersted.

Nature of a magnetic field.

-Magnetic field strength.

-Magnitude of field and current flow.

-Vector nature of magnetic field.

Force and the magnetic field.

-The right-hand rule.

-The practical unit of the magnetic field.

-Force, current, and field.

-Meters and motors.

Current flow in a magnetic field.

-Force of a magnetic field.

-Magnetic field near a long straight wire.

-Uniform magnetic field.

-The mass of a charged particle and the magnetic field.

-Nomentum of an alpha particle and the magnetic field.

TEXTS

Basic: CPPSSC, Ch. 28

Supplementary: MCP, Ch. 51

LABORATORY

CPLG: Exp. 50

Exp. 51

Exp. 52

ECP, Ch. 23, Sec. 23.1

VISUAL AIDS

Films:

A Magnet Laboratory, PSSC (20)

Electrons in a Uniform Magnetic Field, PSSC (10)

Mass of the Electron, PSSC (18)

Magnetic Force, McGH (29)

OUTSIDE READING

MacDonald, D.K.C. "The Relationship of Electricity and Magnetism" from:
Farady, Maxwell, and Kelvin, Science Study Series.
Doubleday and Co., 1964.

Maxwell, James Clark "On the Induction of Electric Currents" from: A Treatise on Electricity and Magnetism, Vol. 2. Claredon Press, Oxford, 1881, Ch. 3.

29. ELECTROMAGNETIC INDUCTION AND ELECTROMAGNETIC WAVES (L days)

INSTRUCTIONAL RESOURCES

Michael Faraday

- -Induced currents in a wire loop.
- -Induced current and velocity of a conductor.
- -Relative velocity between loop and magnetic field.

Magnetic flux.

- -Definition of "magnetic flux."
- -Changing magnetic flux and its effects.
- -Methods of producing an . induced current.

Changes in magnetic flux.

- -Induced EMF.
- -Direction of the induced EMF.
- -Len's Law and conservation of energy.

Electromagnetic waves.

- -Electric fields around changing magnetic fluxes.
- -Magnetic field around changing electric fields.
- -Mechanism of electromagnetic radiation.
- -The electromagnetic spectrum.
- -Electromagnetic character of light waves.

TEXTS

Basic: CPPSSC, Ch. 29

Supplementary: MCP, Ch. 53 Ch. 54 Ch. 59

LABORATORY

CPLG: Exp. 53
Exp. 54

Franck-Hertz Experiment Cenco.
May be used as a demonstrationlaboratory session.

VISUAL AIDS

Film:
Electromagnetic Waves, PSSC (33)

OUTSIDE READING

Feyman, R.P., Leighton, R.B. and Sands, M. "Scientific Imagination" from: Feyman Lectures on Physics, Vol. 2 Addison-Wesley, Reading, Mass. 1963, Ch. 20.

Born, Max. "Electromagnetic Theory" from: Einstein's Theory of Relativity.

Dover Publications Inc., N.Y. 1962, Ch. 5.

30. SPECIAL THEORY OF RELATIVITY (4 days)

INSTRUCTIONAL RESOURCES

Relativistic kinematics.

- -A medium for light waves.
- -Waves in a moving media.
- -One-way measurement of light.

Michelson-Morley Experiment; the Michelson interferometer.

The Lorentz contraction.

- -Twin source interference in a moving medium.
- -A first-order experiment with light.
- -The speed of light -- a universal constant.

The Fizeau experiment.

Relativistic addition of velocities.

Time and frame of reference.

- -Lorentz transformation.
- -Time dilation.
- -An experiment with muons.
- -Length of moving objects.
- -The twin paradox.

TEXTS

Basic: CPPSSC, Ch. 30

Supplementary: MCP, Ch. 12 Ch. L6

LABORATORY

CPLG: Exp. 55

Exp. 56

Exp. 57

Exp. 58

VISUAL AIDS

Film:

Time Dilation, PSSC (15)

OUTSIDE READING

Bronowski, J. "The Arrow of Time" from: Insight. Harper and Row, N.Y., 1964.

Ciardi, John. "My Father's Watch" from: As If.
Rutgers, The State University, 1956.

Feyman, Leighton, and Sands,
M. The Feyman Lectures on
Physics, Vol. 1. AddisonWesley Pub. Co., Inc.,
Reading, Mgss, 1963, Ch. 15.

31. PHOTOS (3 days)

INSTRUCTIONAL RESOURCES

The graininess of light.

- -X-rays
- -Photon model of light.

Properties of photons.

- -The photoelectric effect.
- -Energy of photon and frequency.
- -Photoelectric current and light intensity.
- -Threshold wavelength.
- -Photon momentum.
- -Einstein's photoelectric equation.
- -The orderliness of chance.
- -Graininess and interference.

Reconciliation of particle and wave model of light.

- -Electromagnetic waves and photons.
- -Planck's constant.

TEXTS

Basic: CPPSSC, Ch. 31

Supplementary: MCP, Ch. 61

LABORATORY

Project physics, Exp. 42

VISUAL AIDS

Films:

Photons, PSSC (18)

Photoelectric Effect, PSSC (21)

Pressure of Light, PSSC (21)

OUTSIDE READING

Born, Max. "Electromagnetic Theory" from: Einstein's the Theory of Relativity.

Dover Pub. Inc., N.Y.,
1962, Ch. 5.

32. SPEED, ENERGY AND MASS (3 days)

INSTRUCTIONAL RESOURCES

Mechanical behavior of particle at high speed and large exchanges of energy.

- -The ultimate speed.
- -Speed and K.E.
- -Momentum.
- -The momentum of photons, pressure of light.
- -Compton scattering.
- -Electron-position annihilation.
- -Nuclear reactions and conservation of total energy.
- -Mass and energy.
- -Mass for photons.

,1

TEXTS

Basic: CPPSSC Ch. 32

Supplementary: MCP, Ch. 75 Ch. 76

LABORATORY

None

VISUAL AIDS

Films:

Ultimate Speed, PSSC, (23)

Electron-Positron Annihilation, PSSC (19)

Photon Collisions and Atomic Waves, EBF (30)

OUTSIDE READING

Bertozzi, W. "Things That Go Faster Than Light," Scientific American, July, 1960.

Feyman, Leighton and Sands.

The Feyman Lectures on
Physics, Vol. 1. AddisonWesley Pub. Inc., Reading,
Mass. 1961, Ch. 16.

33. ATOMS AND SPECTRA (4 days)

INSTRUCTIONAL RESOURCES

The stability of atoms.

- -Frank-Hertz experiment; atomic energy levels.
- -Internal energy of the atom.

Atomic spectra.

- -Excitation and emission.
- -Absorption spectra.
- -Energy loss and photon emission.
- -The hydrogen atom.

ERIC

-Energy levels of the hydrogen atom.

TEXTS

Basic: CPPSSC, Ch. 33

Supplementary: MCP, Ch. 56 Ch. 58

Ch. 60

LABORATORY

CPLG: Exp. 59
Exp. 60

VISUAL AIDS

Films:

The Frank-Hertz Experiment, PSSC (30)

Light Sources and Their Spectra, EBF (30)

Wavelength of Spectrum Lines, EBF (30)

OUTSIDE READING

Hoffman, Banesh. Strange Story of the Quantum, Dover Pub. 1959, Chs. 4, 5, and 8.

Bitter, Francis. Magnets-The Education of a Physicist,
Science Study Series. Doubleday Anchor, 1959, Chs. 3 and 7.

34. MATTER WAVES (3 days)

INSTRUCTIONAL RESOURCES

Particle and wave model of light.

- -de Brogbe's hypothesis.
- -Planck's constant.
- -Interference and de Brogbe's waves.
- -Helium atoms and neutrons.

Light and matter.

- -Conservation of energy and momentum.
- -Newtonian approximations.
- -Standing waves.
- -A particle in a "box."

TEXTS

Basic: CPPSSC, Ch. 34

Supplementary: MCP, Ch. 62

VISUAL AIDS

Films:

Matter Waves, PSSC (28)

Interference of Photons PSSC (13)

OUTSIDE READING

Hughes, Donald J. The Neutron Story, Science Study Series. Doubleday Anchor, 1960.

35. ATOMS, MOLECULES AND NUCLEI (4 days)

INSTRUCTIONAL RESOURCES

Atomic structure.

- -Hydrogen-like atoms--energy levels and size.
- -Helium ion and helium atom.
- -Lithium atom.

Electron binding.

- -Absorption spectra.
- -Iomization energies.
- -Electron scattering.
- -Size of atoms.
- -Electron shells.

The Pauli principle; particles in a box.

Chemical binding.

The deuteron.

- -The nuclear force.
- -Complex nuclei.

TEXTS

Basic: CPPSSC, Ch. 35

Supplementary: MCP, Ch. 66 Ch. 77

LABORATORY

None

VISUAL AIDS

Films: Interference of Photons, PSSC (26)

Matter Waves, PSSC (17)

Fs 539.14 Composition of Atoms (49F)

Fs 539.7 What's in the Atom (41F)

Fs 539.76 Structure of the Atom (49F)

OUTSIDE READING

Hecht, Selig. Explaining the Atom, rev. ed. Viking Press.

Semat, Henry and Rapport, Samuel. Atomic Age Physics. Holt, Rinehart, and Winston. Chs. 6, 10.

36. CHANGE IN ATOMS AND NUCLEI (4 days)

INSTRUCTIONAL RESOURCES

Atomic and nuclear systems.

- -Conservation of energy.
- -Conservation of momentum and of angular momentum.
- -Conservation of parity.
- -Conservation of nucleons.

Atomic reactions.

- -Atomic fission.
- -Alpha decay.
- -Lifetimes and barrier penetration.
- -Alpha decay and barrier penetration.
- -Lifetime and energy spread.
- -Photon emission.

TEXTS

Basic: CPPSSC Ch. 36

Supplementary: MCP Ch. 78 Ch. 79

Ch. 80

VISUAL AIDS

Films:

Barrier Penetration-Ripple Tank Wave Phenomenon
III, PSSC (26)

Inside the Nucleus and Fission, EBF (30)

Nuclear Energy, EBF (30)

Atomic Energy, An Introduction, EBF (11)

Nuclear Reactor, MCGH (09)

OUTSIDE READING

Einstein, Albert and Infeld,
Leopold. The Evolution of
Physics, The Growth of
Ideas from Early Concepts
to Relativity and Quanta.
Simon and Schuster, N.Y.

Physics of Atoms and Molecules. Wiley and Sons.

APPENDICES

ERIC"

APPENDIX A

Suggested Topics for Individual Study

ERIC AFull Tool Provided by ERIC

MEASUREMENT

The history of the metric system

Present and future need for scientific personnel

The origin of the units of the English system

Contributions of atomic energy to medicine, industry, and so forth

The use of dimensional analysis in physics

Contributions of electronics to transportation

Precise measurements in industry

Research in industry

Development of vernier scales

The ammonia clock

length

The work of the United States
Bureau of Standards

The work of the Naval Observatory

Government research agencies, Office of Naval Research, and so forth

The standard meter measure in terms of wave

Radio transmission of standard frequency and time signals

The history of the calendar

MECHANICS

Perpetual motion machines

The Brachistochrone

Stresses in simple cranes and trussels

Forces acting on a sailboat

Streamlining in transportation

Friction measuring devices

Standards for non-slip surfaces

The forces on a moving automobile

Space stations

Space ships

The ultracentrifuge and its applications

Big Bertha

ERIC

Rocket and missile dasign

Streamlining in transportation

Friction measuring devices

Standards for non-slip surfaces

The forces on a moving automobile

The Foucault pendulum

Theory of the gyroscope

The gyrocompass

The ship-stabilizing gyro

Elementary mechanics of billiards

Kepler's laws of planetary motion

The elastic properties of materials

Measurement of surface tension with

tensiometer

Canal lock systems

Measurement of surface tension through capillary rise

Measurement of tensile and compressive strength

The action of "wetting agents"

Uses of principle hydraulic press

Capillarity in soils

The Bathysphere

The hydraulic ram

Water systems

Uses of the Bernoulli principle

High altitude flights

Uses of pneumatics

HEAT

The historical development of the kinetic theory of gases

The development of the temperature scales

High and low temperature measuring instruments

Thermal expansions in structures

Thermostatic controls

The human calorimeter

The bomb calorimeter

Modern fuels

Solar heating, furnaces, and so forth

Thermal conductivity measurements

Meterological instruments and data

Air conditioning

Modern gasoline and diesel engines

The gas refrigerator

Modern gas turbine

Early heat engines

WAVE MOTION AND SOUND

The physical pendulum

The history of the development of the musical scales

The history of the development of a musical instrument

Electronic musical instruments

Hearing tests and audiometry

The measurement of noise level

Velocity of sound measurements

Sonar

The production and application of ultrasonics

Architectural acoustics

Sound recording, hi-fidelity

LIGHT

Historical theories of light

The Michelson Morley experiment

The historical development of the method for determining the velocity of light

Applications of polarized light

Illumination requirements for home and industry

Stroboscopic effects and their uses

Color photography - still and motion pictures

The Palomar telescope

The deposition of films on glass

The pinhole camera

Optical illusions and mirages

Famous solar eclipses

Use of the spectrograph in industry

Light meters and their uses

Cameras and projectors Lasers

55

ELECTRICITY AND MAGNETISM

Electrostatic generators

The electorstatic smoke eliminator

Lightning protection systems

The zerographic duplicating process

Theories of terrestial magnetism

Corrections to the magnetic compass

The degaussing and deperming of ships

Electroplating

Electrolytic refining of metals

Electrode potentials

Special primary cells and their uses

Storage batteries

The location of faults in telephone lines

The development of the telephone

The electric power plant

Anti-gravity devices

The Oudin coil

The lives of Faraday, Tesla, Edison, Steinmetz, and so forth

The electro-magnetic pump

MODERN PHYSICS

The lives of the atomic scientists

The development of the periodic table

The discovery of the various atomic particles

The x-ray microscope

X-rays and their uses

Radiation detectors and counters

The use of radio-active isotopes as tracers

Prospecting for radio-active minerals

The uses of phosphorescent and flourescent materials

The uses of infra-red radiation

Uses of ultra-violet light

Electronic instruments in medical practice

Guided missiles

Transistors and their uses

The magnetron

Micro-wave relay systems

Loran

Piezo-electricity and its uses

Long distance transmission of radio signals

The allocation of radio frequencies

The applications of radar to traffic control and enforcement

The uses of the photronic cell

The methods of separation of uranium

The Hanford project

The biological effects of cosmic rays

The trans-uranium elements

The military applications of atomic energy

The peacetime uses of atomic energy

Radiological effects of the atomic bomb

The atomic submarines

APPENDIX B

Books, Periodicals, and Equipment

ERIC **
Arull Text Provided by ERIC

Author	<u>Title</u>	Publisher
TEXT BOOKS		
Basic:		
PSSC	College Physics, First Edition.	D. C. Heath
PSSC	College Physics Laboratory Guide.	D. C. Heath
PSSC	Guide for Advanced Topics - 2nd edition.	D. C. Heath
Supplementary		
White	Modern College Physics - 4th/5th edition.	Van Nostrand
White and Manning	Experimental College Physics	McGraw Hill
CLASSROOM REFERENCE LIBR	ARY	
,	Science Study Series (Paper-backs)	Doubleday
Brown, Thomas	Foundations of Modern Physics	John Wiley & Sons
Chemical Rubber Co.	Handbook of Chemistry and Physics	Chemical Rubber Co.
Ciofarri, Bernard	Experiments in College Physics, 2nd ed.	D. C. Heath
Glasstone, S.	Source Book on Atomic Energy, 2nd ed.	Van Nostrand
Knauss, Harold P.	Discovering Physics	Addison-Wesley
Ference, et al	Analytical Experimental Physics, 3rd ed.	Univ. of Chicago Press
Sears and Zemansky	University Physics, 2nd ed.	Addison-Wesley
Schaum, Daniel	Outline of Theory and Problems for Students of College Physics	Schaum Publishing Co.

Slater

Walter, M. J.

Discovering Physics by Experiment

McGraw-Hill

Addison-Wesley

Modern Physics

TEACHER REFERENCES:

Demonstration Experiments in Sutton, Richard

Physics

Addison-Wesley University Physics Sears, Zemansky

Physics for the Inquiring Princeton Press Rogers, Eric

Mind

Addison-Wesley Vols. I & II Feynman,

L. W. Taylor Manual of Advanced Undergrad Exp. Brown,

in Physics

Calculus and Analytical Thomas

Geometry

Procedures in Experimental Prentiss Hall Strong

Physics

PERIODICALS

American Institute of American Journal of Physics

Physics

Sigma Xi American Scientist

Physics Teacher

American Institute of Physics Today

Physics

American Association Science

for Advancement of

Science

Science Service Science Newsletter

National Science Teacher Science Teacher

Assoc.

Scientific American, Inc Scientific American

SCIENTIFIC AMERICAN ARTICLES RELATING TO PHYSICS

1

1957 Title Author New Methods of Radio Transmission January Weisner Pions Marshak February Atomic Clocks Lyons Inertia Sciama Fresh Water from Salt March Jenkins The Child and Modern Physics Piaget The Crab Nebula Oort The Overthrow of Parity April Morrison The Age of the Solar System Brown Sun Clouds and Rain Clouds Roberts The Shortest Radio Waves May Gordy Diffusion in Metals Cullity A Rocket Around the Moon June Ehricke & Gamow Radiation Pressure Henry Atoms Visualized Müller July The Absorption of Radio Waves in Space Lilley Gell-Mann & Rosenbaum Elementary Particles August The Origin of Hurricanes Malkus Electroluminescence Ivey How Fishes Swim Gray The Ear Bekesy The Plasma Jet Giannini October Salt and Rain Woodcock Plasmoids Bostick November Superconductivity Matthias December Observations of Satellite I Whipple & Hynek Fusion Power Post

Morrison

Heinrich Hertz

1958	Title	Author
January	Tracking Satellites by Radio Ultrahigh-Altitude Aerodynamics The Principle of Uncertainty	Meugel & Herget Schaaf Gamow
February	Strong Magnetic Fields Ancient Temperatures The Discovery of Fission	Furth Emiliani Hahn
March	Particle Accelerators Helmholtz	Wilson Crombie
April	Antimatter The Teaching of Elementary Physics	Burbidge & Hoyle Michels
May	Tornadoes A "Flying-Spot" Microscope The Earth As a Dynamo	Tepper Montgomery & Bonner Rosenbaum & Elsasser
June	Superfluidity Climate and the Changing Sun	Lifshitz Öpik
July	Prestressed Concrete More about Bat "Radar"	Lin Griffin
August	Hot Spots in the Atmosphere of the Sun Magnetic Resonance	Zirin Pake
September	Innovation in Physics Innovation in Technology The Encouragement of Science	Dyson Pierce Weaver
October	The Stellerator The Tails of Comets	Spitzer Biermann & Lüst
November	The Revival of Thermo Electricity Stellar Populations Drilling for Petroleum	Joffe Burbidge Marsden
December	Non-Military Nuclear Explosions The Maser	Johnson & Brown Gordon

1959	<u>Title</u>	Author
January	Dying Stars The Atomic Nucleus	Greenstein Peierls
February	Reactor Fuel Elements How Water Freezes	Schumar Chalmers
March	Radiation Belts Around the Earth The Weak Interactions Long Earthquake Waves	Van Allen Treiman Oliver
April	The Solar System Beyond Neptune Aligned Crystals in Metals	Gingerich Cullity
May	Nuclear Rockets Balloon Astronomy Experiments in Color Vision Artificial Satellites and Relativity	Newgard & Levoy Schwarzschild Land Giuzborg
June	Rocket Astronomy An Ancient Greek Computer Junction-Diode Amplifier	Friedman Price Uhliv
July	Pulsating Stars and Cosmic Distances The Exclusion Principle	Kraft Gamow
August	Satellites and the Earth's Atmosphere The Radio Galaxy Ocean Waves	Jastro Westerhout Bascom
September	Issue on Ionizing Radiation	
October	The Earth in the Sun's Atmosphere Fuel Cells	Charman Austin
November	Ultrahigh Pressures The Invention of the Electric Light High Energy Cosmic Rays	Hall Josephson Rossi
December	The Arms of the Galaxy The Flow of Matter	Bok Reiner

1960	<u>Title</u>	Author
January	The 600-foot Radio Telescope Breeder Reactors The Green Flash	McClain Weinberg O'Connell
February	The Magnetism of the Sun Fracture in Solids Cosmic Spherules and Meteoritic Dust	Babcock Gilman Pettersson
March	Interplanatary Navigation Applications of Superconductivity The Nuclear Force	Mickelwait Bechhold Marshok
April	Life Outside the Solar System The Mossbauer Effect Radiation and the Human Cell	Huang Benedetti Puck
May	The Exploration of the Moon	Jastro
June	Solar Particles and Cosmic Rays Ferrites Humphry Davy	Anderson Hogan Williams
July	The Force Between Molecules The Zodiacal Light Metal Whiskers Things That Go Faster Than Light	Derjaguin Blackwell Brenner Rothman
August	Vertical-takeoff Aircraft Radar Astronomy The Structure of Liquids	Campbell Eshleman & Peterson Bernal
September	The Scientific Revolution	Butterfield
October	Optical Pumping High Speed Impact The Physics of Woodwinds Count Rumford	Bloom Charters Benade Wilson
November	Fiber Optics Superfluidity and "Quasi-Particles" The Age of the Solar System	Kapany Reif Reynolds
December	Nonuniform Magnetic Fields	Pohl

1961	Title	Author
January	Re-entry from Space Glass A New Scale of Stellar Distances The Growth of Snow Crystals	Becker Greene Wilson Mason
February	Peculiar Galaxies The Celestial Palace of Tycho Brahe	Burbidge Christenson
March	Electrical Propulsion in Space Gravity Lee Waves in the Atmosphere Monomolecular Films	Giannini Gamow Scorer Ries
April	The Size of the Solar System Ultrahigh-speed Rotation	McGuire Beams
May	The Temperature of the Planets From Faraday to the Dynamo	Mayer Sharlin
June	Optical Masers Subdwarf Stars The Airborne Magnetometer	Schawlow Burbidge Jensen
July	The Moon Weather Satellites Superconducting Computers	Perman Neiburger & Wexler Ittner & Kraus
August	Astroblemes The Reproduction of Sound Low-Altitude Jet Streams	Dietz David Barad
Septembe r	Issue on Cells	
October	Communication Satellites Observing Dislocation The Magnetism of the Ocean Floor	Pierce Dash & Tweet Raff
November	The Two-Mile Accelerator Tektites Maxwell's Color Photograph The Electrocardiogram	Ginzton & Kiuk Barnes Evans Scher
December	The Eötvös Experiment Galvanomagnetism and Thermomagnetism	Dicke Angrist

1962	Title	Author
January	Sonic Boom Aftereffects in Perception Hypernuclei Two-Phase Materials	Wilson Prentice Telegdi Slayter
February	The Solar Chromosphere Physiological Effects of Acceleration Wear	Athay Rogers Rabinowicz
March	Radio Galaxies Ultrahigh Vacuum The Longest Electromagnetic Waves	Heeschen Steinhertz & Redhead Heirtzler
April	Exploding Stars Paradox The Action of Adhesives The Soaring Flight of Birds	Kraft Quine de Bruyne Cone
May .	Gamma Ray Astronomy Experiments with Goggles Exploding Wires	Kraushaar & Clark Kohler Bennett
June	The Detection of Underground Explosions Superconducting Magnets Computer Programs for Translation	Leet Kunzler & Tanenbaum Yngre
July	The Moon Illusion Telephone Switching	Kaufman & Rock Feder & Spencer
August	The Spark Chamber Neutrino Astronomy	O'Neill Morrison
September	The Antarctic and the Upper Atmosphere The Antarctic and the Weather	Wright Rubin
October	Ancient Fluids in Crystals Semiconductor Particle-Detectors	Roeddar Bilaniuk
November	The Pleiades The Physics of Violins Neutron Radiograph	Limber Hutchins Berger
December	Desalting Water by Freezing Atmospheric Tides The Conduction of Heat in Solids Ultraviolet Radiation and Nucleic Acid	Snyder Butler Sproull Deering

1963	Title	Author
January	Resonance Particles The Evolution of Galaxies Why Do Roads Corrugate?	Hill Arp Mather
February	Rotation of Stars Shock Waves and High Temperature The Clock Paradox	Abt McChesney Bronowski
March	Organic Matter from Space Electric Location by Fishes The Two-Neutrino Experiment Ball Lightning	Mason Lissmann Lederman Lewis
April	Planetary Nebulae The Synthetic Elements	Liller Seaborg & Fritsch
May	The Physicist's Picture of Nature Moiré Patterns Radiation Belts	Dirac Oster & Nishijima O'Brien
June	The Ecological Effects of Radiation Noctilucent Clouds Kilomegacycle Ultrasonics Hydrogen in Galaxies	Woodwell Soberman Dransfeld Roberts
July	Advances in Optical Masers The Voyage of Mariner II The Fermi Surface of Metals	Schawlow James Mackintosh
August	Observatories in Space The Strength of Steel	Berman Zackay
September	Energy	Schurr
October	Conservation Laws Chondrites and Chondrules After Images	Feinberg & Goldhaber Wood Brindley
November	Plasmas in Solids Architectural Acoustics	Bowers Knudsen
December	Vehicular Traffic Flow Quasi-Stellar Radio Sources The Continuous Casting of Steel Magnetic Monopoles	Herman & Gardels Greenstein Gallagher & Old Ford

<u>1964</u>	Title	Author
January	The Large Cloud of Magellan Boron The Origins of the Steam Engine Advances in Field Emission	Bok Massey Ferguson Dyke
February	Tektites and Impact Fragments from the Moon Strongly Interacting Particles	OKeefe Chew
March	All Weather Aircraft Landing The Circulation of the Upper Atmosphere Fast-Neutron Spectroscopy The Discovery of Stellar Aberration	Brady Newell Cronberg Stewart
April	The Interaction of Light with Light The Solar Wind	Giordmaine Parker
May	High Voltage Transmission Dwarf Galaxies	Barthold & Pfeiffer Hodge
June	The Supersonic Transport X-ray Astronomy Magneto Thermoelectricity	Bisplingh o ff Friedman Wolfe
July	Radiowaves from Jupiter	Franklin
August	Radio-emitting Flare Stars Liquid Crystals	Lovell Ferguson
September	Probability Mathematics in the Physical Sciences	Kac Dyson
October	The Omega-Minus Experiment Micrometeorology	Fowler & Samios Sutton
November	Exploding Galaxies The Solid State of Polyethylene The Michelson-Morley Experiment	Sandage Wunderlich Shankland
December	Hurricane Modification Three-Pigment Color Vision Fluid Control Devices	Simpson & Malkus MacNichol Angrist

1965	<u>Title</u>	Author
January	Infrared Astronomy by Balloon The Undercooling of Liquids Magnetic Resonance of High Pressure	Strong Turnbull Benede k
February	Superconductivity at Room Temperature Fiber-reinforced Metals The Age of the Orion Nebula	Little Kelly Vandervoort
March	The Structure of Crystal Surfaces The Magnetosphere De Forest and the Triode Detector Computer Experiments in Fluid Dynamics	Germer Cahill Chipman Harlow
April	Intense Magnetic Fields The Discovery of Icarus The Stirling Refrigeration Cycle	Kolm & Freeman Richardson Köhler
May	The Luminescence of the Moon High Pressure Technology Molecular Beams	Kopal Zeitlin Frisch
June	Photography by Laser The Magnetic Field of the Galaxy Corona Chemistry	Leith & Upatnieks Berge & Seielstad Coffman & Browne
July	Hydroxyl Radicals in Space Ultrastrong Magnetic Fields	Robinson Bitter
August	Infrared Astronomy Nuclear Fission Density Gradients	Murry & Westphal Leachman Oster
September	Issue on Urbanization	
October	Electrical Effects in Bone Chance Quantum Effects in Superconductors	Bassett Ayer Parks
November	Resonant Vibrations of the Earth Microelectrons	Press Hittinger & Sparks
December	Violations of Symmetry in Physics The Aurora The Physics of the Piano	Wigner Akasoiu Blackham

<u>1966</u>	Title	Author
January	Communication by Laser Ranger Missions to the Moon	Miller Schurmeier
February	Neutrinos from the Atmosphere and Beyond Stress-corosion Failure	Reines Swann
March	The Voyage of Mariner IV	James
April	Chemical Lasers The Photographs from Mariner IV The Muonium Atom	Pimentel Leighton Hughes
May	The Scientific Experiments of Mariner IV	Sloan
June	Locating Radio Sources with the Moon Applications of the Coanda Effect	Clarke Reba
July	The Detection of Underground Explosions Polarized Accelerator Targets	Bullard Shapiro
August	A Solid-State Source of Microwaves The Origin of Cosmic Rays The Study of Sailing Yachts	Bowers Burbidge Herreshoff & Newman
September	The Uses of Computers in Technology The Uses of Computers in Science	Coons Oettinger
October	Night Blindness Science in History, by J. D. Bernal The Origins of the Copernican Revolution	Dowling Pirie Ravetz
November	Magnetic Fields on the Quiet Sun	Livingston
December	Noise The Problem of the Quasi-Stellar Objects Progress Toward Fusion Power	Beranek Burbidge & Hoyle Fowler & Post

1967	<u>Title</u>	Author
January	Can Time go Backward? Electric Currents in Organic Crystals	Gardner Pope
February	Reversals of the Earth's Magnetic Field The Solvated Electron	Cox, Dalrymple & Doell Dye
March	The Origin of the Automobile Engine The Surface of the Moon Advances in Superconducting Magnets	Bryant Hibbs Sampson, Craig & Strongin
April	Antimatter and Cosmology Neutron-Activation Analysis	Alfvén Wahl & Kramer
May	Ordinary Matter A Third-Generation of Breeder Reactors Light-Emitting Semiconductors Vision and Touch	Feinberg Bump Morehead Rock & Harris
June	Liquid Lasers	Lempicki & Samelson
July	The Leakage Problem in Fusion Reactors	Chen
August	The Youngest Stars	Herbig
September	The Electrical Properties of Materials The Magnetic Properties of Materials The Thermal Properties of Materials The Nature of Metals The Solid State	Ehrenreich Keffer Zinman Cottrell Mott
October	The Shape of the Earth Interstellar Grains	King-Hele Greenburg
November	Gravitational Collapse Maxwell's Demon	Thorne Ehrenberg
December	The Vibrating String of the Pythagoreans Scattering High-Energy X-Ray Stars Zone Refining	Helm Barger & Cline Giacconi Pfann

1968	Title	Author
January	Remote Sensing of Natural Resources The Circulation of the Sun's Atmosphere Perpetual Motion Machines	Colwell Starr et. al. Angust
February	The Arrival of Nuclear Power Advances in Holography	Hogerton Pennington
March	Channeling in Crystals Pulse Code Modulation	Bassed t Mayo
May	The Three Spectroscopics The Heat Pipe The Lunar Orbiter Mission to the Moon	Weisskopf Eastman Levin et. al.

LIBRARY REFERENCE MATERIALS--It is recommended that each school library should have a reference collection similar to the following list. The items marked with (*) are valuable teacher reference books.

	•	
AUTHOR	TITLE	PUBLISHER
Alter, D., et al	Pictorial Astronomy	Thomas Y. Crowell
Andrade, E. N.	Sir Issac Newton	Macmillan
Angelo, E., Jr.	Electronic Circuits	McGraw-Hill
Ashford, Theo. A.	From Atoms to Stars	Henry Holt Co.
Asimov, Isaac	Building Blocks of the Universe	Abelard Schuman Ltd.
Asimov, Isaac	Only A Trillion: Speculations and Explorations on the Marvel of Science	Abelard Schuman Ltd.
Asimov, Isaac	The Chemicals of Life	Abelard Schuman Ltd.
Barnett, Lincoln	The Universe and Dr. Einstein	Sloane
Behrens, Charles F.	Atomic Medicine	Nelso n
Berkeley, E. C. and Wainwright, L.	Computers: Their Operation and Applications	Reinhold Pub.
Besancon, R. M.	Encyclopedia of Physics	Reinhold Pub.
Bishop, Amasa	Project Sherwood	Wesleyan Univ. Press
Bitter, Francis	Magnets	Wesleyan Univ. Press
Bohr, Niels	Atomic Physics and Human Knowledge	Wiley and Sons
Bonner, F. T. and Phillips, H.	Principles of Physical Sciences	Addison-Wesley
Boucher, Paul E.	Fundamentals of Photography (4th ed.)	Van Nostrand
Boys, C. V.	Soap Bubbles	Wesleyan Univ. Press
Bragg, Sir William	Concerning the Nature of Things	Dover
Burton, E. F. and Kohl, W. H.	The Electron Microscope	Reinhold

AUTHOR .	TITLE	PUBLISHER
Carlin, B.	Ultrasonics	McGraw-Hill
Coggins, Jack	Rockets, Jets, Guided Missiles and Space Ships	Random House
*Coleman, James	Relativity for the Layman	Frederick Press
Cook, James G.	Electrons Go to Work	Dial
Cooper, M.	Inventions of Leonardo da Vinci	Macmillan
Courant, Richard and Robbins, Herbert	What is Mathematics?	Oxford U.P.
D'Abro, A.	The Rise of the New Physics	Dover
Dantzig, Tobias	Number, The Language of Science	Macmillan
Davis, Helen Miles	Science Exhibits	Scien c e Servise
*Davis, Helen Miles	Scientific Instruments You Can Make	Science Service
*Dean, Gordon	Report on the Atom	Alfred A. Knopf
*Eaton, James	Beginning Electricity	Macmillan
Eddington, A.	Nature of the Physical World	U. of Michigan
Editors of Scientific American	Scientific American Reader	Simon and Schuster
Einstein, Albert	Out of my Later Years	Philosophical Lib. (out of print)
*Einstein, Albert and Infeld, Leopold	The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta	Simon and Schuster
Epstein, Beryl and Epstein, Samuel	The Rocket Pioneers: On the Road to Space	Messner, Julian
Evans	Experiments in Electronics	Prentice Hall
Faraday, M.	On the Various Forces of Nature	Crowell
Faro, U. and Faro, L.	Basic Physics of Atoms & Molecules, text ed.	Wiley

• s		
AUTHOR	TITLE	PUBLISHER
Faro, U.	Basic Physics of Atoms and Molecules	M. I. T.
*Fermi, Laura	Atoms in the Family: My Life with Enrico Fermi	Univ. of Chicage
Friend, J. Newton	Numbers: Fun and Facts	Scribner's
Gamow, George	Biography of Physics	Harper
Gamow, George	The Birth and Death of the Sun	Mentor Books
Gamow, George	Matter, Earth, and Sky	Prentiss Hall
Gamow, George	Mr. Thompkins Explores the Atom	Cambridge Univ.
Gamow, George	Mr. Thompkins in Wonderland	Cambridge Univ.
Gamow, George	Mr. Thompkins Learns the Facts of Life	Cambridge Univ.
Gamow, George	One, Two, Three-Infinity	Viking Press
Gamow, Grorge and Stern, Marvin	Puzzle-Math	Viking Press
Garner, Louis	Transistor Circuits	Coyne
*Glasstone, Samuel	Sourcebook on Atomic Energy (2nd ed.)	Van Nostrand
Gray, Dwight E.	Radiation Monitoring in Atomic	Van Nostrand
Griffin, D. R.	Echoes of Eats and Men	Wesleyan Univ. Press
*Hannay, Norman B.	Semiconductors	Reinhold Pub.
*Hecht, Selig	Explaining the Atom (rev. ed.)	Viking Press
*Hogben, Lancelot	Mathematics for the Million (3rd ed.)	Norton, W. W.
Hogben, Lancelot	Science for the Citizen	Norton, W. W.
Holton, Gerald J.	Introduction to Concepts and Theories in Physical Science (1952)	Addison-Wesley
Holton, Gerald J.	Foundations of Modern Physical Science (1958)	Addison-Wesley

AUTHOR	TITLE	PUBLISHER
Hornung, Julius L.	Radar Primer	McGraw Hill
Hoyle, Fred	Frontiers of Astronomy	Mentor
Hoyle, Fred	The Nature of the Universe	Mentor
Jammer, M.	Concepts of Space	Harvard Press
Jeans, J. H.	The Growth of Physical Science	Cambridge Univ. Press, London
*Jenkins, F. A. and White, H. E.	Fundamentals of Optics, 3rd ed.	McGraw-Hill
Jungk, Robert	Brighter Than A Thousand Suns	Harcourt Brace
Kahn, Fritz	Design of the Universe	Crown Publishers
Landau, L. D.	What Is Relativity	Basic Books
Lemon, H. B.	From Galileo to the Nuclear Age	Univ. of Chicago Press
*Ley, Willie	The Conquest of Space	Viking Press
*Ley, Willie and Von Braun, W.	The Exploration of Mars	Viking Press
*Ley, Willie	Rockets, Missiles and Space Travel (rev. ed.)	Viking Press
Ley, Willie	Satellites, Rockets, and Outer Space	New American Library
*Lieber, T. C.	The Education of T.C. Mits	Norton, W. W.
*Lieber, Lillian R.	Einstein Theory of Relativity	Holt, Rinehart & Winst
*Lieber, Lillian R.	Infinity	Holt, Rinehart & Winst
Luhr, O.	Physics Tells Why	Ronald
MacCurdy, E.	Notebook of Leonardo da Vinci	Braziller
McLaughlin, Howie	Space Age Dictionary	
Meyer, Jerome S.	Fun with Mathematics	World Publisher
Messel, H.	Introduction to Modern Physics	St. Martins

AUTHOR	TITLE	PUBLISHER
Minnaert, M.	The Nature of Light and Color in Open Air	Dover Press
Moore, Patrick	The Story of Man and the Stars	Norton, W. W.
Mott, M. F. and Jones, F	Metals and Alloys	Dover Press
Park, David	Contemporary Physics	Harcourt
*Payne-Gaposchkin, Cecelia	Stars in the Making	Harvard Univ.
Peierls, R. E.	The Laws of Nature	Charles Scribner
Pfeiffer, John	Changing Universe, The	Random House .
Pierce, J. R.	Electrons, Waves and Messages	Doubleday
Reid, Constance	From Zero to Infinity	Thomas Y. Crowell
Ridenour, L.	Modern Physics for the Engineer	McGraw
*Rogers, E.	Physics for the Inquiring Mind	Princeton Univ. Press
Roberts, John	Heat and Thermodynamics, 5th ed.	Interscience
Rossi, B.	Cosmic Rays	McGraw
Santillana	Crime of Galileo	Univ. of Chicago
Scott, W. T.	The Physics of Electricity & Magnetism	Wiley
*Sears, F. W.	Mechanics, Wave Motion and Heat	Addison-Wesley
*Sears, F. W. and Zemansky, M. W.	University Physics	Addison-Wesley
*Semat, Henry	Introduction to Atomic and Nuclear Physics	Holt, Rinehart & Winston
*Semat, Henry	Physics in the Modern World	Holt, Rinehart & Winston
*Semat, Henry and White, H.	Atomic Age Physics	Holt, Rinehart & Winston
Skilling, H. H.	Exploring Electricity: Man's Unfinished Conquest	Ronald Press

AUTHOR	TITLE	PUBLISHER
Sutton, R.	Physics of Space	Holt
Swezey, Kenneth M.	Science Magic	McGraw Hill
Von Laue, M.	History of Physics	Academic
Weizsacker	Contemporary Physics	Braziller
Wilson, E.	An Introduction to Scientific Research	McGraw Hill
Wilson, M.	Energy	Silver Burdett
*Woodbury, David O.	The Glass Giant of Palomar	Dodd, Mead & Co.
*Wright, Helen and Rapport, Samuel, eds.	Great Adventures in Science	Harper
Young, M. E.	Radiological Physics	Academic Press
	Encyclopedia of Science and Technology	McGraw Hill
	Man, Rockets and Space	Julian Messner
	Mathematics of the Imagination	Simon and Schuster
	The Mighty Force of Research	McGraw Hill
	Yearbook of Science and Technology 1962	McGraw Hill
	Yearbook of Science and Technology 1963	McGraw Hill
	Yearbook of Science and Technology	McGraw Hill

LIST OF PHYSICS EQUIPMENT TO BE SHARED BY SCHOOLS

The following equipment items have been provided on a circulatory basis among schools in pach area.

W.		AREA AND SC	HOOL HOLDING CU	ISTODY
	DESCRIPTION	WEST	CENTRAL	EAST
	Alpha Ray Apparatus, Hoag, Welch 621A o/e	Pt. Loma	Clairemont Hoover Madison	Morse
	Alpha Ray Track Apparatus, Cenco 71245	Pt. Loma	Clairemont Hoover	Crawford Morse
	Ballistic Pendulum, Blackwood Form	Pt. Loma	Clairemont Hoover Madison	Morse
	Brenner Torque Demonstrator	I.A.D.C	I.A.D.C.	I.A.D.C
	Canal Ray Tube, Wien, Cenco 71525	Mission Bay Pt. Loma	Hoover Madison	Morse
	Choke & Resonance, Demonstration, Welch 2601B o/e	Pt. Loma	Clairemont Hoover Madison	Morse
į	Piffusion Pump (High Vacuum)		Clairemont	
*	Electromagnetic demonstration set, Welch 2462 o/e	La Jolla Pt. Loma	Madison	Lincoln Morse
	Inertial Masses, Cylindrical, Cenco 75305	Mission Bay	Kearny	Crawford
	Interferometer, with Accessory Lamp, Michelson Cenco 71857, 71859-26	San Diego	Clairemont Madison	Crawford Morse
	Mechanical Equivalent of heat apparatus, Welch 1684 o/e	La Jolla Pt. Loma	Madison	Lincoln Morse
	Microwave Optics Equip., Cenco 80422, 80429-3 80429-4, 80434	Pt. Loma	Clairemont Hoover Madison	Morse
	Nuclear Scattering Apparatus, Welch 615	Mission Bay	Kearny Madison	Lincoln Morse
	Oil Drop Apparatus Kit, Welch 620 o/e	Pt. Loma	Clairemont Madison	Lincoln Morse

West: La Jolla, Mission Bay, Point Loma, San Diego entral: Clairement, Hoover, Kearny, Madison ast: Crawford, Henry, Lincoln, Morse

LIST OF PHYSICS EQUIPMENT (Cont.)

	AREA AND SCH	OOL HOLDING CU	STODY
DESCRIPTION	WEST	CENTRAL	EAST
Photoelectric Relay, demonstration, Welch 2148g o/e	La Jolla Pt. Loma	Madison	Lincoln Morse
Power Supply, demonstration, Welch 2138 c/e		Clairemont Hoover Madison	Morse
Power Unit, high voltage, for Oil Drop Apparatus, Welch 620K o/e	Pt. Loma	Clairemont	Lincoln Morse
Radio Receiver, demonstration, Welch 2620 o/e	Pt. Loma	Clairemont Hoover Madison	Morse
Radio Transmitter, demonstration, Welch 2621 o/e	Pt. Loma	Clairemont Hoover Madison	Morse
Specific Charge of Electron Apparatus, Cenco 71264	Pt. Loma	Clairemont Madison	Lincoln Morse
Stroboscope, 480 to 60,000 vib/min., Welch 2154 o/e	Pt. Loma	Clairemont Kearny Hoover (2) Madison	Morse
Support, Rotating, ball bearing, Cenco 75265	Mission Bay	Kearny Madison	Crawford
Triode Demonstrator, Welch 2152 D	Pt. Loma	Clairemont Hoover	
Ultasonics, demonstration, Cenco 71870	Mission Bay San Diego	Madison	Crawford Morse
Voltmeter, for Oil Drop Apparatus, Welch 3087 o/e	Pt. Loma	Clairemont Madison	Lincoln Morse
Wave Demonstrator, Bell Labs		Clairemont Kearny	Crawford

APPENDIX C

Supplementary Materials for Reproduction

ERIC Fruit Ext Provided by ERIC

Conversion Factors—Continued

	2	THESE AGE	
Electric flux density	esu	$1/(12\pi \times 10^9)$	coulomb m-3
	emu	105/4π	•
Permittivity	nsə	g-01 X 798'8	farad m-1
Potential difference	statvolt (esu) abvolt (emu)	300 10-8	volt
Capacitance	statfarad (esu) abfarad (emu)	$1/(9 \times 10^{11})$	farad
Current	statamp (esu) abamp (emu)	$1/(3\times 10^9)$ 10	due
Magnetic flux density	gauss (emn) line in ? esu	10-4 1.550 × 10-5 3 × 10 ⁶	weber in-2
Magnetic flux	maxwell (emu) esu	10-8 3 × 10¢	weber
Resistivity	ohm cm ohm/mil ft	10-3 1.662 × 10-9	ohm m
Resistance	statohm (esu) . abohm (emu)	9 × 10 ¹¹	ohm
Magnetic field strength	amp turn cm ⁻¹ oersted (emu)	103/4π	anp turn m-1
Permeability	nwə	4x × 10-7	henry m ⁻¹
Inductance	sbhenry (emu) stathenry (esu)	10-9 9 × 10 ¹¹	henry
Illuminance	lumen ft-2	10.764	lumen m² (lux)
Luminance	lumen ft-2 steradian-1	10.764	lumen m-2 steradian-1

85

principal feature of the M.K.S. system is that it legitimathe central authority on all questions of interbeginning January 1, 1940. Under this system the standneed for further use of the electrostatic and electromagnational scientific standards, legislated that the M.K.S. tizes the practical units of electricity and removes the ards of mass and length are used as basic units. The units be substituted for the C. G. S. system International Committee on Weights and In 1935 the Measures, netic units system of

ことのは からのは できている

多品品配合 温斯克

CONCEPT AS	ASA STANDARD LETTER SYMBOL	MKS UNDT	CONCENT ASA	LETTER SYMBOL	MKS UKUT
	MECHANICS	ý	BLECTRICITY AND		MAGNETISM
Distance	&	meter	Charge	9,9	conlomb
Area	A, S, σ	1112	Electric field	1	•
Volume	٨	ma.	strength	3 4	volt m-1
Time	•	second	Electric flux density	Q	coulomb m-2
Velocity	u, r	nı sec-1	Permittivity	•	farad m-1
Acceleration	8	m sec-2	Potential		
Angle	•	radian	difference	A	volt
Solid angle	3	steradian	Capacitance	ပ	farad
Angular velocity	3	radian sec-1	Current	i, I	ampere
Angular	:		Current density	•	smp m-2
acceleration	8	radian sec-2	Electrochemical		•
Mass	* :	kilogram	edmagent	N	kg coul-1
Force		newton	Magnetomotive	. ניט	amp turn
Weight Torque	w, F, (W)	newton newton m	Magnetic flux density	æ	weber m ⁻²
Moment of		1. m. 2.	Magnetic flux	•	weber
Momentum	a d	ng m sec-1	Magnetic pole strength	p. (m)	weber
Impulse		newton sec	Magnetic	,	
Energy:	E	joule	moment	E	weber m
Power	Ъ	watt	Resistivity	. d	ohm m
Pressure	s.	newton m-2	Resistance	R, (r)	ohm
Density	p, (D)	kg m-\$	Magnetic field strength	Н	amp turn m-1
			Permeability	a	henry m-1
1			Inductance	7	henry
	HEAT				
Quantity of heat	0	jouje		•	
Specific heat		•	PHC	PHOTOMETRY	r.
capacity	ಲ ಸ	Joulekg-' deg-'	Illuminance	ख	lunen m-2
Diffusivity	·	watt m-' (leg-'	Luminance	В	lumen m ⁻²
		- 356		•	steradian 1

lunen m-2	lumen m ⁻² steradian ⁻¹
Ħ	B
Illuminance	Luminance

Luminous flux

Atomic Constants

(MKS Units, based on J. W. M. DuMond and E. Richard Cohen Report to National Research Council Committee on Constants and Conversion Factors of Physics, December, 1950).

٤.	Faraday (9.65194 ± 0.00007) × 107 coul equiv-1 (physical scale)
٧.	Avogadro's number
	Planck's constant
u u	Electron mass(9.10721 \pm 0.00025) \times 10-41 kgm.
	Electronic charge
ı,im	Specific electronic charge
H	Fine structure constant (7.29698 ± 0.00005) × 10-3
h/(mc)	Compton wavelength(2.425067 \pm 0.000032) \times 10-13 m
2	First Bohr radius (0.529151 \pm 0.000003) \times 10 ⁻¹⁰ m
h	Stefan-Boltzmann constant
ւլ = 8#Ու	$t_1=8$ rhc First radiation constant (4.99071 \pm 0.00014) $ imes$ 10-22 joule m
$c_z = hc/k$	$c_2 = hc/k$ Second radiation constant(1.43868 ± 0.00006) × 10-3 m deg
$\lambda_{max}T$	Wien displacement law constant (0.289757 \pm 0.000012) \times 10-2 m deg
HB	Bohr magneton(0.927120 \pm 0.00022) \times 10-23 smp m ²
H^*/mN_o	H^*/mN_0 Ratio, proton mass to electron mass. 1836.139 ± 0.034
no.	Energy equivalent of electron mass(0.510969 \pm 0.000010) Mev
+44	Boltzmann constant(1.38026 \pm 0.00006) \pm 10 ⁻²³ joule deg ⁻¹
U	Velocity of light(2.997902 ± 0.000009) × 10 ⁶ m sec ⁻¹
R®	Rydberg constant for infinite mass (10973732.3 \pm 1.0) m ⁻¹
24	Universal gas constant(8.31665 ± 0.00034) × 10 ⁴ joule mol ⁻¹ deg ⁻¹
	Standard volume of ideal gas(22.4207 ± 0.0004) m² mol-1

Conversion Factors

•

A conversion factor is a dimensionless ratio used to make a change in units. Thus the conversion factor

12 in 1 it

(read, "There are 12 inches in 1 foot") may be used to convert 10 feet to inches by direct

multiplication and cancellation of the units, dently must invert the conversion factor to produce the desired result and multiply by feet. To convert 15 inches to feet we evi-1.ft 12 in

(read, "In 1 foot there are 12 inches").

When the conversion factor is used incor-

The conversion factor is the

OWS:

$$1 \text{ m} \times \frac{1609.4 \text{ m}}{1 \text{ m} \text{i}} \times \frac{1 \text{ yd}}{0.9144 \text{ m}} = 1760 \text{ yd}.$$

when the conversion factor is used intor- rectly we notice immediately that the desired cancellation of units is not obtained and this	factor is used invor- iately that the desired not obtained and this	10.018 kg m ⁻¹	16.018 kg m ⁻³
is the signal to invert the factor.	factor.	To convert mi to	To convert mi to vd. proceed as follow
To convert to it to kg m we proceed as follows:	g m-• we proceed	1679.4 m	l vd
1 1 $\times \frac{453.59 \text{ gm}}{1 \text{ lb}} \times \frac{1 \text{ kg}}{1000 \text{ gm}}$	$\times \frac{1 \text{ kg}}{1000 \text{ cm}} \times$	1 mi × 1 mi × 0.9144 m	0.9144 m = 1760 ye
	0	The conversion factor is:	ctor is:
$\frac{(1 \text{ ft})^3}{(30.480 \text{ cm})^3} \times \frac{(100 \text{ cm})^3}{(1 \text{ m})^3}$	$= 16.018 \mathrm{kg m^{-3}}.$		1760 yd 1 mi
	-	There are	
Distance	Angstrom wait	10-3 10-3	meter
	in.	2.5400 × 10-2	٠
	ıt vd	0.91440	
	Km.	169.4	
Voloeitv	ft soc-1	0.30480	meter sec ⁻¹
	mi hr	0.44704	
Mass	usa Sam	10-3	kilogram
	slug Ih (mass)	14.594 0.45359	
	(comm) or) And the second	
Force and weight	dyne	13896 0 13896	newton
	Ib (farce)	4.4482	
Energy.	erg	10-7	joule
	kwh	3.6×10^6	,
	cal to n	4.182	
	rt 10 Btu	1055	
Power	erg sort	10-7	watt
	cal sec-1	4.182	
	Btu hr 1	0.2930	
Pressure	dyne cm ⁻²	10-1	newton m-2
	ru q	6.895 × 10°	
	atm en He	1.013 × 10° 1323	•
Doneite	s-mo one	201	ke m-3
	15 ft-3	16.018	•
Specific heat	cal gm-1 dog-1	4182	joule kg-1 deg-1
	Btu lb-1 (°F)-1	4182	
Charge.	statroul (csu)	3.333 X 10-10	coulomb
	abcoul (cmu.)	10	
Electric field strength.	volt cm-1		volt m-1
ميك في الأساب المواهدة ويودو والمنظمة المواهدة المواهدية المواهدة المواهدية المواهدية المواهدة المواهد	dyne stateoul ⁻¹ (esu)	3 X IQ	Company of the state of the sta

: 98

PERIODIC CHART OF THE ELEMENTS

a	. 00	C/I 00 00	ឧធនិធ		м со б о бо с) ((a & % t	 5 æ			
	10 70 20.183	18 △ ୮ 39.948	36	83.80		33.38		(222)	°	3 2 2 6	
-I-0:	9 F 18.9984	CI 35.453		C D				4-12-h-E			174.97
	8 © 15.9994 18	32.064 32.064	200		1 to 4 America	127.80	30	(210)		29	173.04
	7 N 14.0067	15 10 30.9738	33				i de	208.980	-	69 =	₩ <u>₩</u>
	6 C 12.01115	14 Si 28.086 3	89			.		207.19 2	1		
	ი დ ე	13 AI 26.9815	ಕ್ರಾಡ್				5 =		} -	67 W 67	
		R	85	65.37	# 3		87		ļ		
			62 23	63.54	4 4	107.870	6 8			, 	
	······································		28				04		•	Eu G	
			27 C0	58.9332	3	102.905	- Energy	192.2	# .	29 E	
			26 Fe		4 S	101.07	76 Os	190.2	, , , , , , , , , , , , , , , , , , ,	20 E	
			25 Mn	54.9380	చ ా	(33)	75 Pe	186.2	`	09	
			7.5	1	42	95.94	7.4	183.85	eries	59 Dr	
			23	50.942	4 Z	92.906	5 <u>G</u>	180.948	*Lanthanum Series	58 50 50 50 50 50 50 50 50 50 50 50 50 50	
8			21=	47.90	3 V		72	178.49			
			2 Q	44.956	65	88.905	* 22 * 23	138.91	689	(227)	
M	4 0 8 8	Z 20 20 20 20 20 20 20 20 20 20 20 20 20	200	80.08	86	87.62	% (M		80	(226)	
≤ - I	و و و	S	⊕ 🗶	39.102	mo	85.47	R C	132.905	to L	(223)	
			أرموان	87						•	

29 2 2 2 6 2 2

103 LW (257)

102 **NO** (253)

256 (256)

5 7 (253)

8 **4** (5)

の (242)

95 96 **247)** (243) (247)

92 C38.03

क हिंह

90 **Th** 232.038

CORRECTED TO 1961 HOST STABLE KNOWN ISOTOPES SHOWN IN

ISOTOPIS SHOWN PARENTHESIS.

ATOMIC WEIGHTS

Actinium Series

SAN DIEGO CITY SCHOOLS Curriculum Services Division

44
7
1
ibers
Z
8
1118
5
R
3
뜅
ğ
日日
Q
1

55 — Common Logarithms of Numbers — 99

						•				,1			*																	
			*	•						;							-			مرسد المسارد										
	Prop. Parts		43 48 41	1 43 42 4.1 4 2 8.6 8.4 8.2 8 3 129 126 123 12	17.2 16.8 16.4 21.5 21.0 20.5 25.8 25.2 24.6	30.1 29.4 28.7 34.4 33.6 32.8 38.7 37.8 36.9		38 37	3.9 3.8 3.7 7.8 7.6 7.4 11.7 11.4 11.1	4 15.615.2 14.8 14.4 6 19.5 19.0 18.5 18.0 6 25.4 22.8 22.2 21.6	27.3 26.6 25.9 31.2 30.4 29.6	log e=0.4343	35 34 33	7.0 6.8 6.6	3 10.5 10.2 9.9 9.6 4 14.0 13.6 13.2 12.8 5 17.5 17.0 16.5 16.0	6 21.0 20.4 19.8 19.2 7 24.5 25.8 25.1 22.4 8 28.0 27.2 26.4 25.6	21.5;20.6[29.7	log # = 0.4971	31 30 29	3.1 3 29 62 6 5.8 93 9 87	124 12 11.6	5 15.5 15 14.5 14.0 8 18.6 18 17.4 16.8 7 21.7 21 20.3 19.6	24.8 24 25.2 27.9 27 26.1	100	27 26 5.4 5.2	3 8.1 7.8 7.5 7.2 4 10.8 10.4 10.0 9.6 5 13.5 13.0 12.5 12.0	16.2 15.6	8 21.6 20.8 9 24.3 23.4		Prop. Parts
	۵	374	755 *106	4 30 732	*10*	273 529	288 288	Ŕ	588	8238	*133	82.7 2	609 757			302 428	551				- !	325	425 5 522	618	2 712 \$ 803		* !		.,,,,	
	œ	334	719 *072	339	282	253 504	742	181	385 579	766 945	*116	28 28 28	594 742	886	*024 159	289	539		775	888 999		314	415	<u>\$</u>	702		<u>* !</u>		308	
	-	294	682	367	959	227	718 945	160	365 560	747 927	660	265 425	579 728	871	145	276 403	527	647	763	877 988		201 304	405	299	693 785		*		888	
	ø	253	645	335	931	201 455	695 923	139	345 541	828	280	235 409	564 713	857	997	263 391	514	635	752	866 977	085	191 284	395 493	290	684 776		* :	210	372	-
	20	212	88		903	175	883	118	324	711	290	232 393	548	843	983 119	250 378	505	33	9	855 966	075	180 284	385 484	280	675 767	857 946	* !	118 202	284	-
	4	170	85.55	77.88	875	148 405	648 878	989	# CS	874	648	216	55.53	829	88 53	237	490	117	723	843 955	954	170 274	375 474	571	665 758	848 937	19	110 193	275 356	
	3	~	11.66	بمبارعتهم	بنسرسه	122	625 856	-	¥3	674 856	031	362	518 669	814	955 092	224 353	478	۶	717	832 944	053	160	365	199	656 749	839 928		101 185	267 348	
	83	980	264			355	1058		25.2 46.2 33.3	, 255 838 838	710	183	502	88	942	211	465	t c	765	821 933	042	149 253	355 454	551	739	830	±000	093 177	359	_'
	1	043	453			88	577		243	958 828 828	266	336	487	786	928	198	453	ì	69	809	031	138 243	345	542	730	821 911	866	\$31 \$31	251	
'	0	Q	414	Sig	خبرستيد	2041	553	8		617	3 979	4 150 314	472	4771	4 914 5 051	185 315	441		22 88 87	798 5 911	9		335 435	532	628	812 902	9		243	斗
, .	Z				15	16	80	18	22	ដដ	22	28	88	108	31	22.22	35	}	લક	88	8	44	54	45	46	48	80	51 52		i r
•																-														

											-					=		_	==		I.	πĪ.	==		~	2.00	ONIC	
6	474	551 627	701 774	846	917 987	055 122	189	319	382	506	567 627	686 745	802	859 915	971 1 025	629	186	238	340	390	538 538	586	88	727		38 88 88	9.9	8
<u></u>		543 619		839	980	116	182	248 312	376 439	200		681 739	762	854 910			180	232	335	385 435	484	581	675	722	814	 855 55	948	ထ
		536 612	989		903	# 66 108	176	241 306	370 432	\$	555 615	675 733	162	848 904		690	175	227	330	380 430	479 528	576	671	717	808	854	943	10
8		528 604 604	679		988	102	169	235		488	549 609	699 727	785	842 899	954 *009	063	117	222	325	375 425	474 523	571	999	715 759	805	894	939	8
2		520 5 597 6	672 6		889 8 696	9028 996 1	791	228		-	543	722	179	837	\$40 \$004		112	217	320	370	469 518	566	661 661	708 754	800	845 890	934	2
!		513 589 5	738 7		882 882 952	7021 089	26	287	351		537	657	77.4	831	943	!:	106 159	212	315	365	465 513	295	627	703 750	795	841 886	930	4
	427 4	505 5 582 5	657 6	<u> </u>	875 8	082	149 3	280 280	344		531	651	892	825		' '	101	206	309	360	460 509	557	652	699	162	856 881	926	8
8		497 574 51	649 6	┾	868 938 938	007 075 0	142 1	209 274 2	338 3		525 5	645	762	820 876	932	!!	149	201		355 405	455 504	552	600 647	594	982	832 : 877	921	2
2	2 419			!	!	000	136 1	202 2	331 3	<u> </u> !	519 579 5	639 6		814 8	927		090	961		350	450	┼╌┼	633	689 736	782	827	917	-
1	7	566	642 716	789	860 931	ఫైర		নন					-			<u> </u>				5.5		!		10-4			CIV	
0	404	482 559	534	7 782	853	7 993 8 062	129	195 261	325 388	8 451	513 573	633 692	751	808	921		085 133	191	29.45	33.44	445	9 542	590 638	688 731	77.7	858	912	<u> </u>
Z	55 7	57	58 59	—	23	82	65	67	88	10	72	73	75	76	78	80	81 82	83	85	86 87	88	90	92	93	95	98	86	Z
		81.	140	× 0	2 49	∞	18	1.6 3.2 4.8	4.09 4.09	7.5	4.4	2		3 8 9 9 8 9				x 3	2c 4.68	208 /	7.2		+	0.8 1.2	2.0	32.8	9	
9				2 C)		ଛ୍ଲା	2	5.4	868	6.1	5.0	13	120	5.2	P 00					0.4.0. 0.4.1.			a	0.5 1.0 1.5	2.5	3.5	<u> </u>	Parts
Parts		**	140	20	<u> </u>	등	18	8.6.6				4	₹ ¢	20 90		पुर्ख		2	MUN	4001	8		8	0.6 1.2 1.8	2.4 3.0 5.0	4.4	7	9
Prop.				5.2	-		-	5.7	_			K	15.0	in on	0 40	3.5			122	4.4 6.6 6.6	3.8		F=	2.1	2010	00	~ 	Prop.
G					13.8 16.1 18.4		91 19					"		10 4 R		= -	1			400			197	es es				
		%	-0100	4120	⇔ ⊱∞	0	a	-90	4100) [- •(w CD	P	nic	4∜3 व्याह्य	,	يپ به	ł	 /=									•	<u> </u>
بيا	1			_						==				====		=	_									, ,		

55 - Common Logarithms of Numbers - 99

SAN DIEGO CITY SCHOOLS Curriculum Services Division

Trigonometry Table - Four-Place Values of Functions and Radians

DEO	ĝ				90				9	=			(2				130				भ				150				9			· •	Ä	وفرد		, č	2	
															•						_						•												
	20.00	8	25	នន	20.00		9 8	នន	9	58° 88° 7	38	ଞ୍ଚ	2	\$70 00.	20 40 80	200	ន្តទ	86°00′	84	8	100	85°00'	34	300	22	\$4°00'	8.0	88	07	80.00	9	88	12	, 20° 88°	88	ଛ		81°00′	DEGREES
	1.5708	679	1,5821	592	1.5533	35	475	417	388	1.5359		1.5272	213	1.5184	155	1.5097	088	1.5010	981	1.4923	893 864	1.4835	252 717	1.4748	719 690	1.4661	632 603 803	1.4573	515	1.4486	428	1.4399	341	1.4312	325	1.4224	166	1.4137	RADIANS
క్ర		343.8	114.6	85.94 68.75	57.29	-	70	34.37	31.24	28.64 26.43	24.54	21.47	20.21	19.08	12.07	16.35	15.60	14.30	13.20	12.71	11.83	11.43	10.71	10.39	9.788 9.788	9.514	9.255	8.777	8.345	8.144		ro 4	7.269	7.115	6.827	6.691	6.435	6.314	Tan
Ten	0000	83	082	116	.0175	8	38	162	320	.0349 378	407	-6537 -668	495	.0524	505	.0612	120	.0699	758	.0787	846 846	.0875	934	.0963	1022	1051	201	1139	198	.1228	287	.1317	376	.1405	465	.1495	554	.1534	క
3	1.0000	88	1.0000	6666	8666	866	7660	956	995	\$ 666.	366	0666	886	9866.	28	19381	978	9266	126	6006	964 964	.9962	953	9954	951	.9945	7 1 27	.9936	526	.9925	918	9914	907	.9903 0903	\$68 804	9890	88	2286.	Sin
Sia	0000	200	.087	116	.0175	8	25.5	291	320	.0349 378	407	554 555	494	5533	200	0000	200	8690	727	.0785	814	.0872	1000	.0958	1010	1045	103	.1132	190	.1219	276	1305	363	.1392	449	.1478	88	.1564	3
RADIANS	0000	60 0 0 0 0	3887	116	.0175	200	365	200	320	378	407	465	495	.0524	200	.0611	040	.0698	727	.0785	814 844	.0873	305	0960	1018	1047	105	.1134	193	.1222	8	1309	367	.1396	3.22	.1484	542	.1571	
DEGREES	8	28	38	42	1000		38	4		} ⊊	200	₩ \$		3	38		2 2	£° 00°.	22	8	202	50 S	38	88	86 8	6°00°	28	စ္တင္	205	70.05	20	84	22	8,00	28	8	28	3° 00'	

	_															_																																	.,
	ľ	81,000)	3 5	96	90	07	•	3	2	25	88	22	790 007		\$	30	ଛ	780 000	•	8	8	25		25.		300	ଛ		76° 00′	84	30	88	1-11	75° 60'	0.4 0.4	30	202	740 00'	20	96	88		73° 80'	907	200	889	720 00,	DEGREES
	ľ	1.4137		220		35		c	1.3903	400	1.3875	?	817	1,3788	759	230	1.3701	672	1 3614	284	555	1.3526	497	405	1.3439	38.	1.3352	323	284	1.3265	38	1.3177		119	1.3090	035	1.3003	974	1 2015	888	2827	799	770	1.2741	712	1.2654	625 505	1.2566	RADIANS
ટું	ŀ	À	5	ď	36	-1	102	o t	5.071	9070	306	9 65	226	5.145		4.989		133	4 705	829	574	4.511	449	330	4.331	072	4.165	113	198	o,	3.402 914	3.867	įœ	776	3.732	647	3.606	566 596	3 487		412		305	3.271	237	3,172	140	3.078	Tan
Ten		1584	614	773	100	35	35	2 5	202	36	1853	8	914	1944	974	2004	.2035	965	9616	+	186	.2217	247	2/2	23.00	320	2401	432	462	.2493	5,7,4 7,7,4	2586	219	648	2679	742	.2773	805	2867	899	സധ	38	CI	in	တင	140	185	• 4	ਲ
Cos	ı	228	œ	o d	0000	2000	3 6	3 6	2502	250	9833	827	822	9186	21.0	805	9799	793	9781	775	269	.9763	757	6	.9744	730	9724	717	210	.9703	989	19681	674	299	.9659	644	.9636	628	9613	505	596	280	572	.9563	555	9537	528	.9511	Sin
Sin		.1564	593	200	770	200	200	1700	つじ	ÓС	20	1	880	1908	937	965	.1934	2023	9070	2	136	2164	193	777	2250	306	2334	363	391	2419	476	2504	532	260	2588	624	2672	708	2756	784	2812	868	968	2924	926 979	3007	035	.3090	Sos
RADIANS		1571	9	88	670	1000	312	13.64	6671	700	1833	862	891	1920	949	978	.2007	036	2003	193	153	.2182	125	052	506	327	2356	385	414	.2443	503	2531	260	589	2618	676	2705	734	2793	822	2001	88	සි	CO (36	າທ	083	•	
Drorees	1	98	•	Ç	000	2	25	100 001	1	35	300	40	50	110 00	101	2	8	9 5	19000	1	200	30	92	- (13,00.	28	8	97	23	14°90′	25	30	40		15° 00′	202	8	50.5	160 00'	2	25	34		17°00'	25	26	4 5	18°00'	

18° 00′	44 h	C) ←		TT (C	-	1.2566	730.60
288	នេះ	7	40	38	508	, cr.	348
300	2529	2012	474	378	2.086 080 080	1.2479	883
6	∙ •		3 ;	→ 、	3	421	,
130	-4 WH I	വയം	(C) 75" (476	877 877	363	77 50 50 50 50 50 50 50 50 50 50 50 50 50
38	~	⊣ຕ	~ C1	O 🕶	וט פו	ಌ೦	76
\$ g	ന ഗ	393		574	\circ	トザ	82
20° 00'	OD C	.3420	റാര	.3640	- W C	0	70° 60
288	V 101	475	365	200	18	3	348
363	.3578 607 636	.3500z 529 557	.9367 356 346	27.72	2.675 651 628	1.2130	228
21° 00'	9	.3584	~~	.3839	0	- 41	69°0
28	S (C)	611	~ı ~	872 906	တင	. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	20.4
84	.3752	.3665 692		.3939 873	2.539	1.1956	288
	-	719	(2)	.4006	496	0	=
22,00,	TH TO	.3746	$\sim \sigma$	**	2.475.	1.1868	68° 06
88	000	3897	wor.	0.4	434	- u	4.5
400	985	853	223		. 62 62	752	385
23° 60'	.4014	.3907		44.1	2.356	1.1694	679.06
283	072	961	182	-	ورئ د		5₩
862	18. 18. 18.	.4014	.9171	383	0000 0000 0000 0000 0000 0000 0000 0000 0000	1.1606	885
.88°.88°.	.4189	4067	כים יו	4 10	~~	1.1519	
202	218	100	C1	20 0	CI	ကေဖ	क राज
\$ 30 \$ 4	305	.4147 173		יים מיו	2.194	1.1432	88
5	334	2002	20	c) (10		 (
	.4363 392	.4226 253 253	.508. 160		2.145	316	50 50 0 50 50 0
200	.4451	.4305	9026	200	~റ(n un (4 62 (
50	2005 5095	358	38 88	⇒ **	200	NO.	21
26° 90'	.4538	4384	.8988	~~	113 C	1.1170	95°
ឧ	586	. 62 (36	388		
999	654	488	さいつ	5023	1.991	•	261
\$7° 30'	.4712	→ ~	"	o Co	1.963	1.0996	63° 90
		1	6:5	1	1 1		

17.	Decrees	Redeans	Fig.	Cos	Ten	3		
741 586 887 132 949 967 4800 4817 882 884 132 949 968 4800 4817 887 283 984 987 100 987 4807 4808 883 532 884 972 100 880 4807 4808 883 543 1821 100 870 4907 4906 490 882 543 100 870 993 994 4907 490 880 770 880 772 100 870 970 100 870 970 100 970 <th>25-25</th> <td>.4712</td> <td>.4540</td> <td>8910</td> <td>5005</td> <td>1.963</td> <td>1.0996</td> <td>20003</td>	25-25	.4712	.4540	8910	5005	1.963	1.0996	20003
480 4617 8874 169 955 1931 1936 480 4617 8879 459 159 189 189 488 468 843 289 531 1881 1008 488 472 487 488 543 188 160 170 494 4772 878 543 188 100 100 494 4772 878 543 188 100 100 506 874 477 878 543 100 100 507 878 543 178 100 100 100 508 878 678 553 176 100 100 518 878 540 878 678 100 100 518 878 878 573 178 100 100 528 520 870 172 173 173 174	01	741	556	897	132	9	996	} {{
4800 4617 8870 5206 1921 10908 883 688 883 283 907 850 883 689 883 283 907 870 916 720 816 354 889 773 916 720 816 354 889 773 916 720 816 354 889 773 916 720 878 530 816 776 917 878 778 889 776 1007 918 878 778 876 676 776 1007 173 878 878 578 1007 1007 1007 174 878 878 578 1008 1007 1007 174 878 878 578 1008 1007 1007 174 878 878 578 1008 1007 1007 174	8	77.1	592	283	88	525	937	34
85.29 64.3 85.7 24.3 907 87.0 48.77 426.5 88.6	8	0087	2197	8870	5206	1.921	1.0906	3,5
858 669 843 289 884 488 4887 4687 8829 351 1881 10021 4945 4712 8829 354 8859 763 10021 4946 4772 4772 8788 5430 1842 10021 5061 8743 7746 667 875 773 1891 10047 5071 8743 8746 5531 1892 10047 774 667 875 10047 5740 4848 8746 5531 1891 776 100559 776 10047 5740 4849 8746 5531 1694 1704 775 10047 5740 4850 8740 8751 10047 775 10047 5740 4860 8751 10046 775 10047 5741 5751 8751 10050 10055 10056 5742 8751 8751	9	88	643	857	243	206	879	8
4887 4585 8829 5317 1.881 1.0821 9456 770 816 354 858 772 9456 770 816 354 858 772 5061 770 878 5430 1.842 1.0547 5061 488 8746 5533 1.891 1.0647 5061 488 8746 5533 1.894 1.0647 5061 488 8746 5533 1.894 1.0647 5120 4724 8778 5533 1.894 1.0734 523 5061 689 666 576 1.0647 524 4724 8778 5633 1.0647 525 506 686 5774 1.0734 527 507 661 570 1.0659 527 507 661 570 1.043 527 507 661 570 1.043 527 507 </td <th>8</th> <td>858</td> <td>8</td> <td>843</td> <td>88</td> <td>7</td> <td>88</td> <td>2</td>	8	858	8	843	88	7	88	2
916 720 816 354 858 702 4974 4772 818 354 858 702 4974 4772 878 5450 1829 705 5061 8848 772 876 558 10647 5061 8848 772 876 876 10647 5113 4924 8776 558 176 10559 5113 4924 8776 558 176 10559 5113 4924 8776 558 176 10559 5126 500 8650 5774 1772 10472 207 476 578 1775 10472 208 500 8660 5774 1775 10472 208 500 8774 570 10472 208 500 867 570 10472 208 500 877 1772 10472 208 500 </td <th>8.2</th> <td>4887</td> <td>4895</td> <td>833</td> <td>.5317</td> <td>1.881</td> <td>1.0821</td> <td>50°55</td>	8.2	4887	4895	833	.5317	1.881	1.0821	50°55
547 477 882 532 855 10734 5003 772 774 882 10734 10734 5004 484 874 545 876 676 676 5004 484 874 553 1.894 10734 120 884 877 553 1.894 10764 113 4924 8704 558 1.767 1.0559 113 4924 8704 558 1.767 1.0559 113 4924 8704 558 1.767 1.0559 250 680 680 577 1.776 1.0559 252 500 860 577 1.776 1.0559 253 500 860 577 1.776 1.0559 254 600 1.776 1.0559 1.0472 254 600 1.641 1.772 1.0472 254 527 870 1.642 1.047	28	916	223	816	354	898	792	S
500. 747. 748. 749. 1282. 1207. 500. 823. 760. 505. 816. 676. 500. 824. 874. 554. 1504. 10647 100. 884. 874. 554. 1780. 676. 676. 576. 676	38	27.0	140	388	385	38	363	40
CG2 SE23 760 500 SC25 CC20 5061 4848 8746 5543 1.894 1.0647 5071 4824 8746 5543 1.894 1.0647 5119 4824 8746 5553 1.794 617 5119 4824 8746 5553 1.794 1.0653 5129 4824 8746 5553 1.744 1.0559 5236 5000 8660 5774 1.755 1.0472 234 5000 8660 5774 1.755 1.0472 234 5000 8660 5774 1.755 1.0472 234 5000 8610 570 1.0472 1.0472 5411 575 875 600 1.664 1.0472 5411 575 876 673 1.0472 1.0472 5411 575 876 1.0472 1.0472 1.0472 5587 575	35	2003	707	100	35	760.	1.0134	₹8
5061 4548 8746 5543 1900 120 874 772 551 176 10647 5149 4524 8764 5583 1767 10559 5149 4524 8764 5583 1767 10559 5149 4524 8764 5583 1767 10559 265 675 774 1774 10579 265 675 774 1775 10579 265 675 774 1775 10472 270 866 5774 1775 10472 270 866 5774 1775 10472 270 866 5774 1775 10472 270 861 580 661 580 662 270 861 580 661 570 10472 270 861 580 675 1069 1064 270 861 580 671 107	9	38	33	75.	25	200	35	35
1790 1784 1784 1784 1784 1784 1784 1784 1784 1784 1785 1784 1785 1784 1785	1000	199	3 0	3 6	3	200		01
5149 894 718 501 752 502 <th>32</th> <td>38</td> <td></td> <td>2730</td> <td>35</td> <td>20.</td> <td>7500.1</td> <td>200,74</td>	32	38		2730	35	20.	7500.1	200,74
5149 4024 8710 5010 775 10520 5173 4024 8710 689 686 776 10520 5226 5000 8660 5774 1777 10520 2245 6000 8660 5774 1772 10472 2246 6000 8660 5774 1776 443 2341 1755 8772 600 661 300 662 350 381 1755 8772 600 663 350 675 350 440 1755 8772 600 663 350 664 350 440 200 641 300 663 350 664 350 558 520 876 610 1600 1000 1000 540 200 842 650 663 350 663 350 541 321 445 320 663 443 360	25	1251	000	201	25	3 6	710	35
73.7 73.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2 <th< td=""><th>38</th><td>35</td><td>38</td><td>010</td><td>25</td><td>₹!</td><td>8</td><td>40</td></th<>	38	35	38	010	25	₹!	8	40
277 579 675 745 750 277 570 675 773 774 1772 520 278 670 866 5774 1772 10472 201 278 670 866 5774 1772 1441 201 201 202 </td <th>35</th> <td>0110</td> <td>***</td> <td>38</td> <td>2</td> <td>707.</td> <td>200</td> <td>3</td>	35	0110	***	38	2	707.	200	3
5.226 5.00 8.660 5.774 1.732 1.0472 2.24 6.00 8.660 5.774 1.732 1.0472 2.24 6.00 8.660 5.774 1.732 1.0472 2.24 6.00 8.616 5.890 1.698 1.0385 3.25 1.00 6.01 8.77 9.69 1.658 1.0207 3.41 5.150 8.57 6.08 1.668 1.0207 4.43 4.69 2.00 8.45 6.08 6.12 1.0207 4.43 5.498 5.225 8.526 6.128 6.63 1.0210 2.08 6.11 1.0207 4.69 2.05 6.128 6.11 1.0207 4.43 4.55 6.23 2.23	25	200	35	200	36	3	3	នុះ
2526 5000 3850 5774 1.732 1.0472 294 605 616 812 720 443 294 650 616 851 720 443 352 100 601 930 665 356 381 125 8572 609 1.664 10297 440 175 8572 609 1.663 326 556 275 876 618 611 10297 557 276 878 608 643 326 557 275 969 1.660 1.0123 326 557 275 976 1.600 1.0123 326 643 275 496 1.600 1.0123 326 556 275 496 1.600 1.0123 326 643 374 452 450 870 1.003 701 378 471 374 374	3	3	2,5	Cio	3	*	700	9
252 656 S12 720 443 252 656 S16 S17 770 411 252 5075 S616 5890 1668 10385 352 307 S616 5890 1668 10385 440 175 S57 969 1663 10297 440 175 S57 969 1663 10297 548 220 S526 6128 1663 10297 556 275 496 653 1009 964 557 276 476 1048 653 1000 558 579 8450 664 1000 1003 576 276 471 371 450 1000 1003 777 378 455 283 674 150 994 584 457 373 664 150 994 584 457 373 465 280		9229	2000	999	.5774	1.732	1.0472	80,00
224 OGO 651 S51 709 414 5323 5075 8616 5890 1668 356 381 125 5872 606 656 356 381 125 5872 606 651 1020 440 175 5872 608 643 1020 548 220 5826 6128 1020 1020 558 225 5826 6128 643 223 558 225 5826 6128 613 10210 558 225 584 6249 1660 10123 558 528 588 618 611 1152 566 534 456 289 661 1000 770 422 440 550 1000 1000 784 446 284 631 150 1000 784 448 633 452 403 404<	27	3	3	979	812	23	443	S
5222 5405 8616 5890 1.668 1.0385 381 125 5872 600 661 930 686 356 440 175 8572 600 1.664 1.0297 459 200 556 613 1.623 223 556 275 496 208 611 152 556 275 496 208 611 152 556 275 496 208 611 152 557 276 527 618 621 181 643 324 456 208 611 152 556 275 418 415 550 1005 643 324 450 289 611 1003 701 422 408 445 550 1004 789 413 445 550 1006 1006 789 413 413 445	3	7.	3	531	2	28	414	40
352 100 601 930 686 356 440 175 8572 969 675 326 440 175 8572 608 653 208 556 220 8526 618 653 102 557 220 8526 618 653 102 558 220 8180 6249 611 152 558 275 496 208 611 152 558 279 8180 6249 1600 1003 643 324 465 289 550 1003 643 324 465 289 550 1003 701 324 465 289 550 1003 710 422 408 413 550 1003 710 422 408 452 550 1003 818 495 335 550 1003 <t< td=""><th>7</th><td>5323</td><td>5075</td><td>8616</td><td>.5890</td><td>1.608</td><td>1.0385</td><td>ଛ</td></t<>	7	5323	5075	8616	.5890	1.608	1.0385	ଛ
381 125 557 969 665 327 5411 5150 8572 6009 1.664 1.0297 440 175 557 648 653 268 541 570 852 668 643 220 548 522 8526 6128 643 220 558 529 8480 6549 1.600 1.0103 558 529 8480 6549 1.600 1.0103 643 338 465 289 661 1.0007 558 525 529 1.600 1.0103 643 348 453 350 661 1.0007 770 371 465 289 661 1.0007 770 372 463 453 550 971 818 495 333 6619 1.511 368 818 495 355 570 364 374	9	352	8	109	939	989	356	20
5411 5150 8572 6009 1.664 1.0297 440 175 557 648 653 226 5498 5225 5526 6128 653 1.0210 556 275 496 520 6128 623 1.0210 556 275 511 168 611 1.151 1.0210 5585 5299 8180 6249 1.060 1.0103 643 348 465 350 601 1.0103 643 348 465 350 600 1.0103 770 398 418 453 550 991 770 398 418 453 550 994 778 471 520 894 1.50 894 778 495 335 661 1.495 896 878 495 323 661 446 896 896 605 526	z	381	135	587	85	675	327	10
440 175 557 046 653 268 5488 5225 5226 6128 643 229 556 275 496 5826 6128 1.0210 556 275 496 5826 611 1.0210 556 275 496 288 611 1.0210 614 324 465 289 550 094 617 324 465 289 550 094 618 324 450 350 590 095 770 398 413 412 560 1000 770 398 413 412 550 977 770 422 403 453 550 977 778 473 453 550 998 818 495 335 561 570 896 818 495 325 577 520 896 <	33°00	5411	5150	8572	00,5	1 65.5	1 0007	200 000
469 200 542 668 613 223 548 5225 5511 168 621 181 556 275 496 208 611 152 557 275 496 208 611 152 558 275 496 208 611 152 643 348 450 208 611 152 5672 5373 8134 671 1500 1004 643 348 450 230 550 1000 701 373 413 413 550 1000 702 422 403 453 550 1000 703 422 403 453 550 1000 704 422 403 453 550 1000 818 495 337 649 150 1000 818 495 550 400 500 8	10	440	175	557	25	32	296	35
5498 5225 5526 613 1.620 1.021 527 250 512 611 152 526 275 496 208 611 152 526 275 496 208 611 152 556 273 328 550 10023 614 324 465 289 550 094 643 348 450 330 550 094 701 324 465 289 550 1003 770 422 408 451 550 094 770 422 408 453 550 1003 770 422 408 453 550 1003 784 355 577 520 891 886 553 453 550 893 874 553 553 577 520 891 562 563 578 46	8	927	Ę	672	2 8	35	36	35
527 250 310 102 102 556 275 496 288 611 152 5565 275 456 289 611 152 614 324 465 289 611 152 614 324 465 289 610 10123 614 324 450 330 550 065 701 328 418 450 300 065 702 422 403 453 550 065 703 422 403 453 550 10007 704 422 403 453 550 10007 818 491 331 6619 1511 396 818 495 332 6619 1511 396 864 553 561 461 713 464 716 693 610 2745 473 464 716	8	20072	2002	9620	900	255		2 6
525 275 311 103 6021 152 5585 5275 496 504 1.0123 10123 643 324 456 289 1.600 1.0123 643 324 456 289 1.600 1.0036 701 328 418 451 550 977 770 422 403 453 550 977 770 422 403 453 550 977 770 422 403 453 550 977 770 422 403 453 550 977 818 495 335 6619 1.511 984 584 37 6619 1.483 974 592 640 274 1.483 974 6021 554 8241 6873 1.465 9687 6021 5564 8241 6746 475 9687 <td< td=""><th>35</th><td>262</td><td>100</td><td>2770</td><td>925</td><td>38</td><td>1.0210</td><td>250</td></td<>	35	262	100	2770	925	38	1.0210	250
5585 5299 8480 6249 1.600 1.0123 643 348 455 289 1.600 1.0123 5572 5373 445 289 550 065 701 398 418 422 550 977 770 422 403 453 550 977 770 422 403 453 550 977 770 422 403 453 550 977 770 422 403 453 550 977 818 495 335 6619 1.511 9843 818 495 355 577 520 8943 963 564 373 6619 446 574 963 640 278 870 446 657 963 640 278 435 446 657 6021 278 828 306 446 657	17.	555	37.	110	200	775	161	20
5572 5273 465 259 1.000 1.0153 5672 5273 418 450 350 665 5672 5273 418 412 550 1.0036 701 338 418 453 550 977 770 422 403 453 550 977 5760 5446 8357 6494 1.510 9948 7789 471 371 536 977 584 333 .6619 1.511 .9861 8786 558 307 703 1.483 .974 5943 558 307 703 1.483 .974 5944 558 307 703 1.483 .974 5945 558 307 702 1.483 .974 5946 564 225 916 446 657 6021 5564 8241 .773 1.475 .9687	200000	2222	200	0000	3 6	110		200
643 348 450 350 665 55672 5373 8434 530 665 701 398 413 412 550 977 702 422 403 453 550 977 7760 5446 8357 6494 1.540 9948 789 471 371 536 570 9948 878 495 355 577 520 9948 878 495 355 577 520 8948 568 307 703 1.483 9948 568 307 703 1.483 9774 592 640 278 830 441 653 6021 5564 8241 6873 1.483 9774 6021 5564 8241 6873 1.483 9774 6021 5664 8241 776 1.428 9687 6021 5664	35	719	200	2000	25.00	38	1.0123	3
557.2 573.2 843.4 537.1 1570 10036 701 393 413.4 537.1 1570 10007 730 422 403 453 550 10007 770 546 8357 6494 1.540 9948 778 471 371 536 5919 997 818 495 355 577 520 890 876 544 373 661 501 891 905 568 307 703 1.492 893 607 553 307 703 1.493 893 601 253 829 6745 1.483 9774 602 5564 8241 6873 1.483 9774 602 5564 8241 6873 1.465 9687 603 638 225 916 416 657 608 776 1.428 959 411 <th>35</th> <td>662</td> <td>240</td> <td>30</td> <td>2000</td> <td>200</td> <td>1 2 2</td> <td>3</td>	35	662	240	30	2000	200	1 2 2	3
701	8	5579	56	2000	36	36	38	90
730 422 403 453 550 1.000 730 5446 8387 6494 1.540 8948 788 491 331 556 550 890 818 495 335 6619 1.511 9861 876 544 323 6619 1.511 9861 876 548 320 6419 833 905 568 307 703 1.492 803 905 640 258 830 447 6021 5664 8241 6873 1.455 968 603 712 203 959 437 628 6109 5736 8192 7702 1.428 959 157 6109 5736 8192 7702 1.428 6196 5837 8141 7733 1.402 959 167 783 1134 7733 1.402 959 167 783 1134 7733 1.402 959 167 783 1134 7733 1.402 959 168 5807 8141 7733 1.402 959 178 628 580 7705 1.428 959 188 760 175 046 419 570	35	702	300	45.5	25	1.570	1.0850	96
5760 5446 8357 6494 1.540 9948 788 471 371 536 590 999 818 495 355 577 520 890 876 544 323 6619 1.511 9861 876 548 323 6619 1.511 9861 876 548 323 6619 1.511 9861 876 558 307 703 1.492 803 605 616 274 773 1.492 803 607 616 274 464 716 6021 258 830 464 716 603 618 228 830 464 716 604 5736 413 415 657 608 772 288 437 628 6109 5736 413 570 6109 5736 413 570	5	730	36	257	215	36	1.00	25
JOHN (178) JAHE (1	3	3 6	777	3	45	द्ध	316	2
1988 495 354 550	35	300	247	200	1679	1.540	8766	57000
5817 5359 537 520 539 5847 5519 8339 6619 1.511 .9861 905 568 307 703 1.483 803 593 616 274 775 1.483 877 963 616 274 775 1.483 9774 962 640 258 830 464 716 602 1.564 8241 6873 1.455 .9687 650 688 225 916 446 657 680 772 1.455 .9687 657 680 773 1.455 .9687 610 .5736 416 415 628 610 .5736 177 1428 .959 610 .5736 177 1402 .959 610 .8141 .7133 1402 .959 610 .828 .809 .716 .833 .43	35	200	4/1	3/1	23	23	919	20
	38	2502	6632	38	770	22	250	2
905 558 3253 700 301 852 5934 5592 8290 6745 1.483 9774 962 616 278 879 473 716 6021 5564 8241 6873 1.455 9687 6021 5564 8241 6873 1.455 9687 6020 658 225 916 446 657 6030 772 208 959 437 628 6030 5736 1162 416 657 138 760 175 046 419 570 167 783 181 773 411 541 6196 5807 177 393 448 254 854 107 221 383 424 6228 5878 177 383 424 6228 5878 177 383 424 6225 858 1	35	200	34	200	250	110.1	1000	38
5934 5592 8290 6745 1.483 9774 992 6416 224 757 473 716 6021 5564 8241 6873 1.455 9687 6021 5564 8241 6873 1.455 9687 6020 658 225 916 446 657 6030 772 208 959 437 628 6030 5736 1875 046 419 579 138 760 175 046 419 570 167 783 181 773 1402 551 6196 5807 117 393 4483 224 854 107 221 383 424 6283 5878 8090 7265 1376 9425	25	200	5 5	365	500	38	38	25
- 505 - 1505 </td <th>2000</th> <td>2024</td> <td>8</td> <td>2000</td> <td>3 6</td> <td>1.13</td> <td>3</td> <td>20000</td>	2000	2024	8	2000	3 6	1.13	3	20000
992 640 258 830 464 716 6021 .5664 .8241 .6873 1.455 .9687 6020 .5664 .8241 .6873 1.455 .9687 050 688 .225 916 446 657 6080 712 208 959 437 628 138 760 175 046 419 570 167 783 188 089 411 541 2196 .5807 .8141 .7133 1.402 .9512 224 834 107 221 .851 .951 .6283 .5878 .8090 .7265 1.376 .9425 .6283 .5878 Sin Cot Tan Radiator	35	663	250	27.6	CF.C.	35	2112	8
.6021 .5664 .8241 .6873 1.455 .9687 050 638 225 916 446 657 080 712 203 959 437 628 138 760 175 046 419 570 167 783 183 700 411 570 6196 .5807 .8141 .7133 1.402 .9512 254 834 177 .393 4483 254 854 107 21 .393 4483 254 854 107 21 .393 4483 255 854 107 225 834 .410 .393 4483 252 857 .8090 .7265 1.376 .9425 .415 628 .587 8090 .7265 1.376 .8425 .415	8	Ş	200	250	000	25	214	35
050 688 225 916 446 657 080 712 208 959 437 628 .6109 .5736 .8192 .7002 1.428 .9599 .138 760 175 046 419 570 .6196 .5807 .8141 .7133 1.402 .9512 .225 831 174 .393 483 .248 834 107 221 383 483 .6283 .3878 .8090 .7265 1.376 .9425 .6288 .5878 .7265 1.376 .9425	8	6021	5564	23.41	38	1 455	0587	25
680 712 208 959 437 628 859 131 628 132 138 138 150 1418 570 1418 570 151 6196 155 151 1418 541 151 151 1418 541 151 151 1418 541 151 151 151 1418 541 151 151 151 151 151 151 151 151 151	40	0.50	889	200	30	446	657	38
.6109 .5736 .8192 .7002 1.428 .9599 167 783 158 089 411 541 570 1616 225 831 124 177 393 483 254 854 107 221 385 254 8578 8090 .7265 1.376 .9425 Cos Sin Cot Tan Radians	S,	88	712	8	926	437	88	32
138 760 175 046 419 570 167 783 158 089 411 541 225 831 124 177 393 483 254 854 107 221 385 431 6283 5878 8090 7265 1.376 9425	80.38	6019.	5736	.8192	2002	1.498	9599	550 00'
.6196 .5807 .8141 .7133 1.402 .9512 .255 831 124 177 .393 483 254 854 107 221 385 2.54 .5878 .8090 .7265 1.376 .9425 .	10	138	260	175	046	419	570	S
.6196 .5807 .8141 .7133 1.402 .9512 .255 831 124 177 .393 483 254 854 107 221 385 2.54 .6283 .5878 .8090 .7265 1.376 .9425 .	8	167	33	158	88	411	541	40
254 854 107 221 385 483 .6283 5878 8090 7265 1.376 9425 Cos Sin Cot Tan Radians	35	.6196	120	8141	.7133	1.402	.9512	ଞ
.6283 .5878 .8090 .7265 1.376 .9425	35	350	38	***	177	3333	3:	200
Cos Sin Cot Tan Radians	36.00	283	2878	8000	19962	3 5	2070	200
Cot Tan Rabians				3	3	1.00		3
			క	Sin	ខ័	Tan	RADIANS	DECREES

	% % % % % % % %	% % % % % % % % % %	50 50 50 50 50 50 50 50 50 50 50 50 50 5	51° 50° 50° 20° 20° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	8 20045000	\$ \$ 34885	3 339888	# \$29 \$29 \$59 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	66 500 200 100 100 100	45° 00' Degrees
	.9425 396 367 .9338 308 279	.9250 .9261 .9261 .9261 .9261 .9361 .9361	.9076 .9018 .8988 .8988 .959	.8901 872 843 8814 785 756	.8639 .8639 .8639 .8639 .810	.8552 523 494 436 436	.8378 345 319 319 2290 261 261	.8203 174 145 .8116 087 058	.8029 939 970 912 912 883	.7854 Radians
క	1.376 368 360 1.351 343 343	1.327 319 311 1.303 295 288	1.280 272 265 1.257 250 242	1235 220 1213 286 199	1.192 185 1.171 164 157	1.150 144 137 1.130 124	1.111 104 098 1.091 035 079	1.072 066 060 1.054 048	1.038 030 024 1.018 002 003	1.000 Ten
Tan	.7265 310 335 .7400 445 490	.7336 581 627 720 720 766		252 252 252 252 252 252 252 252 252 252	8.44.8.8. 1.44.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	.8693 744 796 .8847 899 952	.9004 057 0516: 0516: 0712	.9325 .935 .9435 .545 .545	.9637 713 770 .9827 884 942	S 188
Ş	.8090 973 9839 921 004	788 888 1788 1788 1888 1888	888. 488. 888. 888. 888.	E55 255 889 889 889 889 889	.75 .75 .75 .75 .75 .75 .75 .75 .75 .75	.7547 .528 .7490 .470 .450	24. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1		.7193 173 1733 7133 992	Sin Sin
Sin	.5878 901 925 .5948 972 995	808. 888. 140. 888. 140.	.6525 .6525 .6525 .745 .71	888 888 888 888 888 888 888 888 888 88	.6428 450 472 .6494 517 539	.6561 .6626 .6626 .670	.6691 713 734 .6756 777	.6820 862 .6884 .955 926	.6947 967 988 .7009 030	.7071 Cos
RADIANS	.6283 312 341 .6370 400	.6458 487 516 .6545 574 603	.6632 661 690 .6720 749 778	.6807 836 865 865 923 952	.6981 .7010 .7010 .7069 .098	7156 185 214 272 301	.7330 359 389 .7418 447	.7505 534 553 7592 621 630	.7679 709 738 7767 796 825	.7854
DEGREES	% 200 200 200 200 200 300 300 300 300 300	8 28898 6	* * * *	% 8 288 9 8	\$ \$ 28848	3 828838	\$ 28848 \$	8 828888	% 828888	45° 00′